chlee10's picture
Update README.md
fc78757 verified
---
library_name: transformers
license: apache-2.0
pipeline_tag: text-generation
datasets:
- maywell/ko_Ultrafeedback_binarized
base model:
- meta-llama/Meta-Llama-3-8B-Instruct
---
![image/png](https://cdn-uploads.huggingface.co/production/uploads/65f22e4076fedc4fd11e978f/MoTedec_ZL8GM2MmGyAPs.png)
# T3Q-Llama3-8B-Inst-sft1.0
## This model is a version of meta-llama/Meta-Llama-3-8B-Instruct that has been fine-tuned with SFT.
## Model Developers Chihoon Lee(chihoonlee10), T3Q
#### Transformers pipeline
```python
import transformers
import torch
model_id = "chlee10/T3Q-Llama3-8B-Inst-sft1.0"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
prompt = pipeline.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
terminators = [
pipeline.tokenizer.eos_token_id,
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = pipeline(
prompt,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
print(outputs[0]["generated_text"][len(prompt):])
```
#### Transformers AutoModelForCausalLM
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = "chlee10/T3Q-Llama3-8B-Inst-sft1.0"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = model.generate(
input_ids,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
```
hf (pretrained=chlee10/T3Q-Llama3-8B-Inst-sft1.0), limit: None, provide_description: False, num_fewshot: 0, batch_size: None
```python
| Task |Version| Metric |Value | |Stderr|
|----------------|------:|--------|-----:|---|-----:|
|kobest_boolq | 0|acc |0.5114|± |0.0133|
| | |macro_f1|0.3546|± |0.0080|
|kobest_copa | 0|acc |0.6000|± |0.0155|
| | |macro_f1|0.5997|± |0.0155|
|kobest_hellaswag| 0|acc |0.4120|± |0.0220|
| | |acc_norm|0.5380|± |0.0223|
| | |macro_f1|0.4084|± |0.0219|
|kobest_sentineg | 0|acc |0.5063|± |0.0251|
| | |macro_f1|0.3616|± |0.0169|
```