fonxlsr / README.md
chrisjay's picture
Update README.md
688ee84
|
raw
history blame
7.88 kB
language: fon
datasets:
- [Fon Dataset](https://github.com/laleye/pyFongbe/tree/master/data)
metrics:
- wer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: Fon XLSR Wav2Vec2 Large 53
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
- name: fon
- type: fon_dataset
- args: fon
metrics:
- name: Test WER
- type: wer
- value: 14.97
---
# Wav2Vec2-Large-XLSR-53-Fon
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on [Fon (or Fongbe)](https://en.wikipedia.org/wiki/Fon_language) using the [Fon Dataset](https://github.com/laleye/pyFongbe/tree/master/data).
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import json
import random
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
#This will download the files from Layele's Github to the directory FonAudio
if not os.path.isdir("./FonAudio"):
!wget https://github.com/laleye/pyFongbe/archive/master/data.zip
with zipfile.ZipFile("data.zip","r") as zip_ref:
zip_ref.extractall("./FonAudio")
with open('./FonAudio/pyFongbe-master/data/train.csv', newline='',encoding='UTF-8') as f:
reader = csv.reader(f)
data = list(reader)
train_data = [data[i] for i in range(len(data)) if i!=0]
with open('./FonAudio/pyFongbe-master/data/test.csv', newline='',encoding='UTF-8') as f:
reader = csv.reader(f)
data = list(reader)
t_data = [data[i] for i in range(len(data)) if i!=0]
#Get valid indices
random.seed(42) #this seed was used specifically to compare
# with Okwugbe model (https://arxiv.org/abs/2103.07762)
v = 1500
test_list = [i for i in range(len(t_data))]
valid_indices = random.choices(test_list, k=v)
test_data = [t_data[i] for i in range(len(t_data)) if i not in valid_indices]
valid_data = [t_data[i] for i in range(len(t_data)) if i in valid_indices]
#Final length of validation_dataset -> 1107
#Final length of test_dataset -> 1061
#Please note, the final validation size is is smaller than the
#expected (1500) because we used random.choices which could contain duplicates.
#Create JSON files
def create_json_file(d):
utterance = d[2]
wav_path =d[0]
wav_path = wav_path.replace("/home/frejus/Projects/Fongbe_ASR/pyFongbe","./FonAudio/pyFongbe-master")
return {
"path": wav_path,
"sentence": utterance
}
train_json = [create_json_file(i) for i in train_data]
test_json = [create_json_file(i) for i in test_data]
valid_json = [create_json_file(i) for i in valid_data]
#Save JSON files to your Google Drive folders
#Make folder in GDrive to store files
train_path = '/content/drive/MyDrive/fon_xlsr/train'
test_path = '/content/drive/MyDrive/fon_xlsr/test'
valid_path = '/content/drive/MyDrive/fon_xlsr/valid'
if not os.path.isdir(train_path):
print("Creating paths")
os.makedirs(train_path)
os.makedirs(test_path) #this is where we save the test files
os.makedirs(valid_path)
#for train
for i, sample in enumerate(train_json):
file_path = os.path.join(train_path,'train_fon_{}.json'.format(i))
with open(file_path, 'w') as outfile:
json.dump(sample, outfile)
#for test
for i, sample in enumerate(test_json):
file_path = os.path.join(test_path,'test_fon_{}.json'.format(i))
with open(file_path, 'w') as outfile:
json.dump(sample, outfile)
#for valid
for i, sample in enumerate(valid_json):
file_path = os.path.join(valid_path,'valid_fon_{}.json'.format(i))
with open(file_path, 'w') as outfile:
json.dump(sample, outfile)
#Load test_dataset from saved files in folder
from datasets import load_dataset, load_metric
#for test
for root, dirs, files in os.walk(test_path):
test_dataset= load_dataset("json", data_files=[os.path.join(root,i) for i in files],split="train")
#Remove unnecessary chars
chars_to_ignore_regex =
def remove_special_characters(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
return batch
test_dataset = test_dataset.map(remove_special_characters)
processor = Wav2Vec2Processor.from_pretrained("chrisjay/wav2vec2-large-xlsr-53-fon")
model = Wav2Vec2ForCTC.from_pretrained("chrisjay/wav2vec2-large-xlsr-53-fon")
#No need for resampling because audio dataset already at 16kHz
#resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"]=speech_array.squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on our unique Fon test data.
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
for root, dirs, files in os.walk(test_path):
test_dataset = load_dataset("json", data_files=[os.path.join(root,i) for i in files],split="train")
chars_to_ignore_regex =
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
return batch
test_dataset = test_dataset.map(remove_special_characters)
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("chrisjay/wav2vec2-large-xlsr-53-fon")
model = Wav2Vec2ForCTC.from_pretrained("chrisjay/wav2vec2-large-xlsr-53-fon") #use checkpoint-12400 to get our WER test results
model.to("cuda")
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = speech_array[0].numpy()
batch["sampling_rate"] = sampling_rate
batch["target_text"] = batch["sentence"]
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
#Evaluation on test dataset
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result**: 14.97 %
## Training
The [Fon dataset](https://github.com/laleye/pyFongbe/tree/master/data) was split into `train`(8235 samples), `validation`(1107 samples), and `test`(1061 samples).
The script used for training can be found [here](https://colab.research.google.com/drive/11l6qhJCYnPTG1TQZ8f3EvKB9z12TQi4g?usp=sharing)
# Collaborators on this project
- Chris C. Emezue ([Twitter](https://twitter.com/ChrisEmezue))
- Bonaventure F.P. Dossou ([Twitter](https://twitter.com/bonadossou))
## This is a joint project continuing our research on [OkwuGbé: End-to-End Speech Recognition for Fon and Igbo](https://arxiv.org/abs/2103.07762)
Please contact `[email protected]` for any issues or questions.