File size: 152,436 Bytes
78aa4ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "kmb_baseline.ipynb",
"provenance": [],
"collapsed_sections": [],
"toc_visible": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"accelerator": "GPU"
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "dK0TQmS_OT_g",
"colab_type": "text"
},
"source": [
"# English to Kimbundu Baseline (Masakhane)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "GYLYy2KkOZD3",
"colab_type": "text"
},
"source": [
"## Dependencies"
]
},
{
"cell_type": "code",
"metadata": {
"id": "UiGBHYWtOSS9",
"colab_type": "code",
"outputId": "6579fb6c-fcb6-47a9-f02f-f075dafc3732",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 555
}
},
"source": [
"! apt-get install libgoogle-perftools-dev libsparsehash-dev"
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"Reading package lists... Done\n",
"Building dependency tree \n",
"Reading state information... Done\n",
"The following package was automatically installed and is no longer required:\n",
" libnvidia-common-430\n",
"Use 'apt autoremove' to remove it.\n",
"The following additional packages will be installed:\n",
" libunwind-dev\n",
"The following NEW packages will be installed:\n",
" libgoogle-perftools-dev libsparsehash-dev libunwind-dev\n",
"0 upgraded, 3 newly installed, 0 to remove and 16 not upgraded.\n",
"Need to get 699 kB of archives.\n",
"After this operation, 7,374 kB of additional disk space will be used.\n",
"Get:1 http://archive.ubuntu.com/ubuntu bionic/main amd64 libunwind-dev amd64 1.2.1-8 [423 kB]\n",
"Get:2 http://archive.ubuntu.com/ubuntu bionic/main amd64 libgoogle-perftools-dev amd64 2.5-2.2ubuntu3 [204 kB]\n",
"Get:3 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libsparsehash-dev all 2.0.2-1 [72.4 kB]\n",
"Fetched 699 kB in 1s (750 kB/s)\n",
"Selecting previously unselected package libunwind-dev:amd64.\n",
"(Reading database ... 145155 files and directories currently installed.)\n",
"Preparing to unpack .../libunwind-dev_1.2.1-8_amd64.deb ...\n",
"Unpacking libunwind-dev:amd64 (1.2.1-8) ...\n",
"Selecting previously unselected package libgoogle-perftools-dev.\n",
"Preparing to unpack .../libgoogle-perftools-dev_2.5-2.2ubuntu3_amd64.deb ...\n",
"Unpacking libgoogle-perftools-dev (2.5-2.2ubuntu3) ...\n",
"Selecting previously unselected package libsparsehash-dev.\n",
"Preparing to unpack .../libsparsehash-dev_2.0.2-1_all.deb ...\n",
"Unpacking libsparsehash-dev (2.0.2-1) ...\n",
"Setting up libsparsehash-dev (2.0.2-1) ...\n",
"Setting up libunwind-dev:amd64 (1.2.1-8) ...\n",
"Setting up libgoogle-perftools-dev (2.5-2.2ubuntu3) ...\n",
"Processing triggers for man-db (2.8.3-2ubuntu0.1) ...\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "GyZDwcUgOlZo",
"colab_type": "code",
"outputId": "f5d67e2a-bb87-4afc-a164-6ee8b3d1afa5",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 139
}
},
"source": [
"! git clone https://github.com/clab/fast_align.git"
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"Cloning into 'fast_align'...\n",
"remote: Enumerating objects: 9, done.\u001b[K\n",
"remote: Counting objects: 100% (9/9), done.\u001b[K\n",
"remote: Compressing objects: 100% (7/7), done.\u001b[K\n",
"remote: Total 213 (delta 2), reused 4 (delta 2), pack-reused 204\u001b[K\n",
"Receiving objects: 100% (213/213), 70.68 KiB | 3.07 MiB/s, done.\n",
"Resolving deltas: 100% (110/110), done.\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "vrcmfy77Or0Z",
"colab_type": "code",
"outputId": "5d4d3ef5-c478-4caa-bc4e-69f23c8fad58",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 503
}
},
"source": [
"! cd fast_align && mkdir build && cd build && cmake .. && make"
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"-- The C compiler identification is GNU 7.4.0\n",
"-- The CXX compiler identification is GNU 7.4.0\n",
"-- Check for working C compiler: /usr/bin/cc\n",
"-- Check for working C compiler: /usr/bin/cc -- works\n",
"-- Detecting C compiler ABI info\n",
"-- Detecting C compiler ABI info - done\n",
"-- Detecting C compile features\n",
"-- Detecting C compile features - done\n",
"-- Check for working CXX compiler: /usr/bin/c++\n",
"-- Check for working CXX compiler: /usr/bin/c++ -- works\n",
"-- Detecting CXX compiler ABI info\n",
"-- Detecting CXX compiler ABI info - done\n",
"-- Detecting CXX compile features\n",
"-- Detecting CXX compile features - done\n",
"-- Found SparseHash: /usr/include \n",
"-- Configuring done\n",
"-- Generating done\n",
"-- Build files have been written to: /content/fast_align/build\n",
"\u001b[35m\u001b[1mScanning dependencies of target atools\u001b[0m\n",
"[ 16%] \u001b[32mBuilding CXX object CMakeFiles/atools.dir/src/alignment_io.cc.o\u001b[0m\n",
"[ 33%] \u001b[32mBuilding CXX object CMakeFiles/atools.dir/src/atools.cc.o\u001b[0m\n",
"[ 50%] \u001b[32m\u001b[1mLinking CXX executable atools\u001b[0m\n",
"[ 50%] Built target atools\n",
"\u001b[35m\u001b[1mScanning dependencies of target fast_align\u001b[0m\n",
"[ 66%] \u001b[32mBuilding CXX object CMakeFiles/fast_align.dir/src/fast_align.cc.o\u001b[0m\n",
"[ 83%] \u001b[32mBuilding CXX object CMakeFiles/fast_align.dir/src/ttables.cc.o\u001b[0m\n",
"[100%] \u001b[32m\u001b[1mLinking CXX executable fast_align\u001b[0m\n",
"[100%] Built target fast_align\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "sJ2LEkCfO4Gx",
"colab_type": "code",
"outputId": "4552ff25-9464-4371-f416-f2f4ea60a2a4",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 124
}
},
"source": [
"! pip install opustools-pkg"
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"Collecting opustools-pkg\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/6c/9f/e829a0cceccc603450cd18e1ff80807b6237a88d9a8df2c0bb320796e900/opustools_pkg-0.0.52-py3-none-any.whl (80kB)\n",
"\r\u001b[K |████ | 10kB 29.7MB/s eta 0:00:01\r\u001b[K |████████ | 20kB 2.2MB/s eta 0:00:01\r\u001b[K |████████████▏ | 30kB 3.2MB/s eta 0:00:01\r\u001b[K |████████████████▏ | 40kB 2.1MB/s eta 0:00:01\r\u001b[K |████████████████████▎ | 51kB 2.6MB/s eta 0:00:01\r\u001b[K |████████████████████████▎ | 61kB 3.1MB/s eta 0:00:01\r\u001b[K |████████████████████████████▎ | 71kB 3.6MB/s eta 0:00:01\r\u001b[K |████████████████████████████████| 81kB 3.2MB/s \n",
"\u001b[?25hInstalling collected packages: opustools-pkg\n",
"Successfully installed opustools-pkg-0.0.52\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "_m9P3UU0PAXr",
"colab_type": "code",
"outputId": "89b37029-dee2-4ca7-e3c9-c08f45d9994d",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
}
},
"source": [
"! git clone https://github.com/joeynmt/joeynmt.git\n",
"! cd joeynmt; pip3 install ."
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"Cloning into 'joeynmt'...\n",
"remote: Enumerating objects: 84, done.\u001b[K\n",
"remote: Counting objects: 100% (84/84), done.\u001b[K\n",
"remote: Compressing objects: 100% (59/59), done.\u001b[K\n",
"remote: Total 2268 (delta 50), reused 44 (delta 25), pack-reused 2184\u001b[K\n",
"Receiving objects: 100% (2268/2268), 2.63 MiB | 17.18 MiB/s, done.\n",
"Resolving deltas: 100% (1571/1571), done.\n",
"Processing /content/joeynmt\n",
"Requirement already satisfied: future in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.16.0)\n",
"Requirement already satisfied: pillow in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (6.2.2)\n",
"Requirement already satisfied: numpy<2.0,>=1.14.5 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.17.5)\n",
"Requirement already satisfied: setuptools>=41.0.0 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (45.1.0)\n",
"Requirement already satisfied: torch>=1.1 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.4.0)\n",
"Requirement already satisfied: tensorflow>=1.14 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.15.0)\n",
"Requirement already satisfied: torchtext in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.3.1)\n",
"Collecting sacrebleu>=1.3.6\n",
" Downloading https://files.pythonhosted.org/packages/45/31/1a135b964c169984b27fb2f7a50280fa7f8e6d9d404d8a9e596180487fd1/sacrebleu-1.4.3-py3-none-any.whl\n",
"Collecting subword-nmt\n",
" Downloading https://files.pythonhosted.org/packages/74/60/6600a7bc09e7ab38bc53a48a20d8cae49b837f93f5842a41fe513a694912/subword_nmt-0.3.7-py2.py3-none-any.whl\n",
"Requirement already satisfied: matplotlib in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (3.1.2)\n",
"Requirement already satisfied: seaborn in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.9.1)\n",
"Collecting pyyaml>=5.1\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/3d/d9/ea9816aea31beeadccd03f1f8b625ecf8f645bd66744484d162d84803ce5/PyYAML-5.3.tar.gz (268kB)\n",
"\u001b[K |████████████████████████████████| 276kB 8.1MB/s \n",
"\u001b[?25hCollecting pylint\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/e9/59/43fc36c5ee316bb9aeb7cf5329cdbdca89e5749c34d5602753827c0aa2dc/pylint-2.4.4-py3-none-any.whl (302kB)\n",
"\u001b[K |████████████████████████████████| 307kB 14.8MB/s \n",
"\u001b[?25hRequirement already satisfied: six==1.12 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.12.0)\n",
"Requirement already satisfied: keras-preprocessing>=1.0.5 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.1.0)\n",
"Requirement already satisfied: gast==0.2.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.2.2)\n",
"Requirement already satisfied: google-pasta>=0.1.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.1.8)\n",
"Requirement already satisfied: wrapt>=1.11.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.11.2)\n",
"Requirement already satisfied: absl-py>=0.7.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.9.0)\n",
"Requirement already satisfied: keras-applications>=1.0.8 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.0.8)\n",
"Requirement already satisfied: wheel>=0.26 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.34.2)\n",
"Requirement already satisfied: tensorflow-estimator==1.15.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.15.1)\n",
"Requirement already satisfied: protobuf>=3.6.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (3.10.0)\n",
"Requirement already satisfied: termcolor>=1.1.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.1.0)\n",
"Requirement already satisfied: opt-einsum>=2.3.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (3.1.0)\n",
"Requirement already satisfied: astor>=0.6.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.8.1)\n",
"Requirement already satisfied: grpcio>=1.8.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.15.0)\n",
"Requirement already satisfied: tensorboard<1.16.0,>=1.15.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.15.0)\n",
"Requirement already satisfied: requests in /usr/local/lib/python3.6/dist-packages (from torchtext->joeynmt==0.0.1) (2.21.0)\n",
"Requirement already satisfied: tqdm in /usr/local/lib/python3.6/dist-packages (from torchtext->joeynmt==0.0.1) (4.28.1)\n",
"Requirement already satisfied: typing in /usr/local/lib/python3.6/dist-packages (from sacrebleu>=1.3.6->joeynmt==0.0.1) (3.6.6)\n",
"Collecting portalocker\n",
" Downloading https://files.pythonhosted.org/packages/91/db/7bc703c0760df726839e0699b7f78a4d8217fdc9c7fcb1b51b39c5a22a4e/portalocker-1.5.2-py2.py3-none-any.whl\n",
"Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (2.6.1)\n",
"Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (1.1.0)\n",
"Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (0.10.0)\n",
"Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (2.4.6)\n",
"Requirement already satisfied: scipy>=0.17.1 in /usr/local/lib/python3.6/dist-packages (from seaborn->joeynmt==0.0.1) (1.4.1)\n",
"Requirement already satisfied: pandas>=0.17.1 in /usr/local/lib/python3.6/dist-packages (from seaborn->joeynmt==0.0.1) (0.25.3)\n",
"Collecting mccabe<0.7,>=0.6\n",
" Downloading https://files.pythonhosted.org/packages/87/89/479dc97e18549e21354893e4ee4ef36db1d237534982482c3681ee6e7b57/mccabe-0.6.1-py2.py3-none-any.whl\n",
"Collecting astroid<2.4,>=2.3.0\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/ad/ae/86734823047962e7b8c8529186a1ac4a7ca19aaf1aa0c7713c022ef593fd/astroid-2.3.3-py3-none-any.whl (205kB)\n",
"\u001b[K |████████████████████████████████| 215kB 18.1MB/s \n",
"\u001b[?25hCollecting isort<5,>=4.2.5\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/e5/b0/c121fd1fa3419ea9bfd55c7f9c4fedfec5143208d8c7ad3ce3db6c623c21/isort-4.3.21-py2.py3-none-any.whl (42kB)\n",
"\u001b[K |████████████████████████████████| 51kB 7.4MB/s \n",
"\u001b[?25hRequirement already satisfied: h5py in /usr/local/lib/python3.6/dist-packages (from keras-applications>=1.0.8->tensorflow>=1.14->joeynmt==0.0.1) (2.8.0)\n",
"Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.6/dist-packages (from tensorboard<1.16.0,>=1.15.0->tensorflow>=1.14->joeynmt==0.0.1) (0.16.1)\n",
"Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.6/dist-packages (from tensorboard<1.16.0,>=1.15.0->tensorflow>=1.14->joeynmt==0.0.1) (3.1.1)\n",
"Requirement already satisfied: urllib3<1.25,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (1.24.3)\n",
"Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (3.0.4)\n",
"Requirement already satisfied: idna<2.9,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (2.8)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (2019.11.28)\n",
"Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.6/dist-packages (from pandas>=0.17.1->seaborn->joeynmt==0.0.1) (2018.9)\n",
"Collecting typed-ast<1.5,>=1.4.0; implementation_name == \"cpython\" and python_version < \"3.8\"\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/90/ed/5459080d95eb87a02fe860d447197be63b6e2b5e9ff73c2b0a85622994f4/typed_ast-1.4.1-cp36-cp36m-manylinux1_x86_64.whl (737kB)\n",
"\u001b[K |████████████████████████████████| 747kB 19.9MB/s \n",
"\u001b[?25hCollecting lazy-object-proxy==1.4.*\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/0b/dd/b1e3407e9e6913cf178e506cd0dee818e58694d9a5cd1984e3f6a8b9a10f/lazy_object_proxy-1.4.3-cp36-cp36m-manylinux1_x86_64.whl (55kB)\n",
"\u001b[K |████████████████████████████████| 61kB 9.0MB/s \n",
"\u001b[?25hBuilding wheels for collected packages: joeynmt, pyyaml\n",
" Building wheel for joeynmt (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for joeynmt: filename=joeynmt-0.0.1-cp36-none-any.whl size=73017 sha256=21d2b5093d74cba0354895c618fae30fc41d9a1a2415f6889ab20ac1f2f0bad6\n",
" Stored in directory: /tmp/pip-ephem-wheel-cache-zyrii7fm/wheels/db/01/db/751cc9f3e7f6faec127c43644ba250a3ea7ad200594aeda70a\n",
" Building wheel for pyyaml (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for pyyaml: filename=PyYAML-5.3-cp36-cp36m-linux_x86_64.whl size=44229 sha256=47a30aa84821b32517dc90994753e491af88e658d419f1b672ae53ccae2d7af2\n",
" Stored in directory: /root/.cache/pip/wheels/e4/76/4d/a95b8dd7b452b69e8ed4f68b69e1b55e12c9c9624dd962b191\n",
"Successfully built joeynmt pyyaml\n",
"Installing collected packages: portalocker, sacrebleu, subword-nmt, pyyaml, mccabe, typed-ast, lazy-object-proxy, astroid, isort, pylint, joeynmt\n",
" Found existing installation: PyYAML 3.13\n",
" Uninstalling PyYAML-3.13:\n",
" Successfully uninstalled PyYAML-3.13\n",
"Successfully installed astroid-2.3.3 isort-4.3.21 joeynmt-0.0.1 lazy-object-proxy-1.4.3 mccabe-0.6.1 portalocker-1.5.2 pylint-2.4.4 pyyaml-5.3 sacrebleu-1.4.3 subword-nmt-0.3.7 typed-ast-1.4.1\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "0Y1lkrt2peIt",
"colab_type": "code",
"outputId": "6a42b2d6-cabb-4d85-c6d8-0b9cb712d1a0",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 106
}
},
"source": [
"! pip install fuzzywuzzy"
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"Collecting fuzzywuzzy\n",
" Downloading https://files.pythonhosted.org/packages/d8/f1/5a267addb30ab7eaa1beab2b9323073815da4551076554ecc890a3595ec9/fuzzywuzzy-0.17.0-py2.py3-none-any.whl\n",
"Installing collected packages: fuzzywuzzy\n",
"Successfully installed fuzzywuzzy-0.17.0\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "Zt4JPGlNpmmG",
"colab_type": "code",
"outputId": "1e32e545-3c68-4154-ef57-94380bf1144a",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 228
}
},
"source": [
"! pip install python-Levenshtein"
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"Collecting python-Levenshtein\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/42/a9/d1785c85ebf9b7dfacd08938dd028209c34a0ea3b1bcdb895208bd40a67d/python-Levenshtein-0.12.0.tar.gz (48kB)\n",
"\r\u001b[K |██████▊ | 10kB 31.1MB/s eta 0:00:01\r\u001b[K |█████████████▌ | 20kB 2.1MB/s eta 0:00:01\r\u001b[K |████████████████████▏ | 30kB 2.7MB/s eta 0:00:01\r\u001b[K |███████████████████████████ | 40kB 2.0MB/s eta 0:00:01\r\u001b[K |████████████████████████████████| 51kB 2.1MB/s \n",
"\u001b[?25hRequirement already satisfied: setuptools in /usr/local/lib/python3.6/dist-packages (from python-Levenshtein) (45.1.0)\n",
"Building wheels for collected packages: python-Levenshtein\n",
" Building wheel for python-Levenshtein (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for python-Levenshtein: filename=python_Levenshtein-0.12.0-cp36-cp36m-linux_x86_64.whl size=144667 sha256=3c10c6cb5f031cdd3b567ad1ca99ded89d6e20b1928a0e7aca1ac93a8561b2af\n",
" Stored in directory: /root/.cache/pip/wheels/de/c2/93/660fd5f7559049268ad2dc6d81c4e39e9e36518766eaf7e342\n",
"Successfully built python-Levenshtein\n",
"Installing collected packages: python-Levenshtein\n",
"Successfully installed python-Levenshtein-0.12.0\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "akiy3TCiQgkP",
"colab_type": "text"
},
"source": [
"## Imports"
]
},
{
"cell_type": "code",
"metadata": {
"id": "Y4YkB1RkQiAv",
"colab_type": "code",
"colab": {}
},
"source": [
"from os import path\n",
"import os\n",
"import time\n",
"\n",
"import pandas as pd\n",
"import numpy as np\n",
"from nltk.tokenize import TreebankWordTokenizer\n",
"from fuzzywuzzy import process"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "61_N3-mYPRY9",
"colab_type": "text"
},
"source": [
"## Data Gathering"
]
},
{
"cell_type": "code",
"metadata": {
"id": "EkW-mUdvQ1eY",
"colab_type": "code",
"colab": {}
},
"source": [
"source_language = 'en'\n",
"target_language = 'kmb'\n",
"os.environ[\"data_path\"] = path.join(\"joeynmt\", \"data\", source_language + target_language) \n",
"os.environ[\"src\"] = source_language \n",
"os.environ[\"tgt\"] = target_language"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "stPP3nXaQmK3",
"colab_type": "code",
"outputId": "3c6e86e4-faf3-4960-af3f-f7285d3983d7",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 355
}
},
"source": [
"# JW300 data\n",
"! opus_read -d JW300 -s $tgt -t $src -wm moses -w jw300.$tgt jw300.$src -q\n",
"\n",
"source = []\n",
"target = []\n",
"with open('jw300.' + source_language) as f:\n",
" for _, line in enumerate(f):\n",
" source.append(line.strip())\n",
"with open('jw300.' + target_language) as f:\n",
" for _, line in enumerate(f):\n",
" target.append(line.strip())\n",
"\n",
"jw300_raw = []\n",
"for idx, line in enumerate(source):\n",
" if len(line) > 2:\n",
" if len(target[idx]) > 2:\n",
" jw300_raw.append([line, target[idx]])\n",
"\n",
"jw300 = pd.DataFrame(jw300_raw, columns=['source_sentence', 'target_sentence'])\n",
"jw300.head(3)"
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"\n",
"Alignment file /proj/nlpl/data/OPUS/JW300/latest/xml/en-kmb.xml.gz not found. The following files are available for downloading:\n",
"\n",
" 920 KB https://object.pouta.csc.fi/OPUS-JW300/v1/xml/en-kmb.xml.gz\n",
" 263 MB https://object.pouta.csc.fi/OPUS-JW300/v1/xml/en.zip\n",
" 10 MB https://object.pouta.csc.fi/OPUS-JW300/v1/xml/kmb.zip\n",
"\n",
" 274 MB Total size\n",
"./JW300_latest_xml_en-kmb.xml.gz ... 100% of 920 KB\n",
"./JW300_latest_xml_en.zip ... 100% of 263 MB\n",
"./JW300_latest_xml_kmb.zip ... 100% of 10 MB\n"
],
"name": "stdout"
},
{
"output_type": "execute_result",
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>source_sentence</th>\n",
" <th>target_sentence</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Table of Contents</td>\n",
" <td>Iala – mu</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>December 1 , 2010</td>\n",
" <td>1 Ua Katatu Ua 2011</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Who Inhabit the Spirit Realm ?</td>\n",
" <td>O Kuiala ku Diulu Kuene Muene Athu mu Nzumbi</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" source_sentence target_sentence\n",
"0 Table of Contents Iala – mu\n",
"1 December 1 , 2010 1 Ua Katatu Ua 2011\n",
"2 Who Inhabit the Spirit Realm ? O Kuiala ku Diulu Kuene Muene Athu mu Nzumbi"
]
},
"metadata": {
"tags": []
},
"execution_count": 10
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "IUJ6tYVWSXzd",
"colab_type": "code",
"outputId": "ca3bd0d1-0b2a-406f-ec92-ec802f8c888b",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 526
}
},
"source": [
"# Common test data\n",
"source_test_file = 'test.en-' + target_language + '.en'\n",
"target_test_file = 'test.en-' + target_language + '.' + target_language\n",
"\n",
"! wget https://raw.githubusercontent.com/jaderabbit/masakhane/master/jw300_utils/test/test.en-$tgt.en\n",
"! wget https://raw.githubusercontent.com/jaderabbit/masakhane/master/jw300_utils/test/test.en-$tgt.$tgt\n",
"\n",
"source = []\n",
"target = []\n",
"with open(source_test_file) as f:\n",
" for _, line in enumerate(f):\n",
" source.append(line.strip())\n",
"with open(target_test_file) as f:\n",
" for _, line in enumerate(f):\n",
" target.append(line.strip())\n",
"\n",
"! rm test.en-$tgt.en\n",
"! rm test.en-$tgt.$tgt\n",
"\n",
"test_raw = []\n",
"for idx, line in enumerate(source):\n",
" if len(line) > 2:\n",
" if len(target[idx]) > 2:\n",
" test_raw.append([line, target[idx]])\n",
"\n",
"df_test = pd.DataFrame(test_raw, columns=['source_sentence', 'target_sentence'])\n",
"df_test.head(3)"
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"--2020-02-04 19:04:17-- https://raw.githubusercontent.com/jaderabbit/masakhane/master/jw300_utils/test/test.en-kmb.en\n",
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n",
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 204945 (200K) [text/plain]\n",
"Saving to: ‘test.en-kmb.en’\n",
"\n",
"\rtest.en-kmb.en 0%[ ] 0 --.-KB/s \rtest.en-kmb.en 100%[===================>] 200.14K --.-KB/s in 0.03s \n",
"\n",
"2020-02-04 19:04:17 (6.53 MB/s) - ‘test.en-kmb.en’ saved [204945/204945]\n",
"\n",
"--2020-02-04 19:04:18-- https://raw.githubusercontent.com/jaderabbit/masakhane/master/jw300_utils/test/test.en-kmb.kmb\n",
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n",
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 230668 (225K) [text/plain]\n",
"Saving to: ‘test.en-kmb.kmb’\n",
"\n",
"test.en-kmb.kmb 100%[===================>] 225.26K --.-KB/s in 0.04s \n",
"\n",
"2020-02-04 19:04:18 (5.35 MB/s) - ‘test.en-kmb.kmb’ saved [230668/230668]\n",
"\n"
],
"name": "stdout"
},
{
"output_type": "execute_result",
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>source_sentence</th>\n",
" <th>target_sentence</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Dorcas “ abounded in good deeds and gifts of m...</td>\n",
" <td>Dorka , “ [ uavudile ] jimbote ni jimola [ ja ...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>What will be considered in this article , and ...</td>\n",
" <td>Ihi i tua - nda di longa ku mbandu íii , ni mu...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Some names in this article have been changed .</td>\n",
" <td>Saí majina a a lungulula .</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" source_sentence target_sentence\n",
"0 Dorcas “ abounded in good deeds and gifts of m... Dorka , “ [ uavudile ] jimbote ni jimola [ ja ...\n",
"1 What will be considered in this article , and ... Ihi i tua - nda di longa ku mbandu íii , ni mu...\n",
"2 Some names in this article have been changed . Saí majina a a lungulula ."
]
},
"metadata": {
"tags": []
},
"execution_count": 11
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "caJcH-I5PL19",
"colab_type": "text"
},
"source": [
"## Word Alignments for Corpus Filtering"
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"outputId": "70061918-b183-417d-a1ca-4448e55277a0",
"id": "ISn3UWvPPjkI",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 104
}
},
"source": [
"# combine Bible + JW300 data for fast_align\n",
"common = pd.concat([jw300])\n",
"common['combined'] = common['source_sentence'] + ' ||| ' + common['target_sentence']\n",
"common['combined'].values.tolist()[0:5]"
],
"execution_count": 0,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"['Table of Contents ||| Iala – mu',\n",
" 'December 1 , 2010 ||| 1 Ua Katatu Ua 2011',\n",
" 'Who Inhabit the Spirit Realm ? ||| O Kuiala ku Diulu Kuene Muene Athu mu Nzumbi',\n",
" 'FROM OUR COVER ||| TU SANGA - MU UÉ MILONGI ÍII',\n",
" '3 Someone Is Out There \\u200b — But Who ? ||| 3 Kuene Athu mu Nzumbi \\u200b — a Nanhi ?']"
]
},
"metadata": {
"tags": []
},
"execution_count": 12
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "gPkjmeHweCtd",
"colab_type": "code",
"outputId": "b4099aee-2db8-49bb-b763-b2ff8e23d839",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 211
}
},
"source": [
"# Output to a file\n",
"with open(\"word_align_file.txt\", \"w\") as wa_file:\n",
" for sample in common['combined'].values.tolist():\n",
" wa_file.write(sample+\"\\n\")\n",
"\n",
"! head word_align_file.txt"
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"Table of Contents ||| Iala – mu\n",
"December 1 , 2010 ||| 1 Ua Katatu Ua 2011\n",
"Who Inhabit the Spirit Realm ? ||| O Kuiala ku Diulu Kuene Muene Athu mu Nzumbi\n",
"FROM OUR COVER ||| TU SANGA - MU UÉ MILONGI ÍII\n",
"3 Someone Is Out There — But Who ? ||| 3 Kuene Athu mu Nzumbi — a Nanhi ?\n",
"4 Visions of the Spirit Realm ||| 4 Isuma ia Athu a Tungu mu Nzumbi\n",
"7 Contact With the Spirit Realm ||| 7 Tu Tena Kuzuela ni Athu a Tungu mu Nzumbi ?\n",
"REGULAR FEATURES ||| TUA - NDA DI LONGA UÉ\n",
"10 Did You Know ? ||| 10 Atangi a Madivulu Metu Ebhula . . .\n",
"11 Draw Close to God — He Knows “ the Heart of the Sons of Mankind ” ||| MILONGI PHALA KU DI LONGA 28 ia Kauana katé ku 6 ia Katanu MBANDU IA 11 - MIMBU : 49 , 74\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "r7TtC6ojfogR",
"colab_type": "code",
"outputId": "cb1df94b-3d65-4a19-c3d8-b088a528b953",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
}
},
"source": [
"# Generate word alignments\n",
"! ./fast_align/build/fast_align -i word_align_file.txt -d -o -v -s > forward.align"
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"ARG=i\n",
"ARG=d\n",
"ARG=o\n",
"ARG=v\n",
"ARG=s\n",
"INITIAL PASS \n",
".................................................. [50000]\n",
"...............................................\n",
"expected target length = source length * 1.25735\n",
"ITERATION 1\n",
".................................................. [50000]\n",
"...............................................\n",
" log_e likelihood: -4.17171e+07\n",
" log_2 likelihood: -6.0185e+07\n",
" cross entropy: 29.8974\n",
" perplexity: 1e+09\n",
" posterior p0: 0.08\n",
" posterior al-feat: -0.16963\n",
" size counts: 2676\n",
"ITERATION 2\n",
".................................................. [50000]\n",
"...............................................\n",
" log_e likelihood: -1.0431e+07\n",
" log_2 likelihood: -1.50487e+07\n",
" cross entropy: 7.47556\n",
" perplexity: 177.979\n",
" posterior p0: 0.0599725\n",
" posterior al-feat: -0.138555\n",
" size counts: 2676\n",
" 1 model al-feat: -0.139253 (tension=4)\n",
" 2 model al-feat: -0.138985 (tension=4.01396)\n",
" 3 model al-feat: -0.13882 (tension=4.02256)\n",
" 4 model al-feat: -0.138719 (tension=4.02786)\n",
" 5 model al-feat: -0.138656 (tension=4.03114)\n",
" 6 model al-feat: -0.138618 (tension=4.03316)\n",
" 7 model al-feat: -0.138594 (tension=4.03441)\n",
" 8 model al-feat: -0.138579 (tension=4.03518)\n",
" final tension: 4.03566\n",
"ITERATION 3\n",
".................................................. [50000]\n",
"...............................................\n",
" log_e likelihood: -8.88493e+06\n",
" log_2 likelihood: -1.28182e+07\n",
" cross entropy: 6.36756\n",
" perplexity: 82.5707\n",
" posterior p0: 0.0555787\n",
" posterior al-feat: -0.131422\n",
" size counts: 2676\n",
" 1 model al-feat: -0.13857 (tension=4.03566)\n",
" 2 model al-feat: -0.135876 (tension=4.17861)\n",
" 3 model al-feat: -0.134234 (tension=4.26769)\n",
" 4 model al-feat: -0.133212 (tension=4.32393)\n",
" 5 model al-feat: -0.132567 (tension=4.35974)\n",
" 6 model al-feat: -0.132157 (tension=4.38264)\n",
" 7 model al-feat: -0.131895 (tension=4.39734)\n",
" 8 model al-feat: -0.131727 (tension=4.4068)\n",
" final tension: 4.41288\n",
"ITERATION 4\n",
".................................................. [50000]\n",
"...............................................\n",
" log_e likelihood: -8.52964e+06\n",
" log_2 likelihood: -1.23057e+07\n",
" cross entropy: 6.11293\n",
" perplexity: 69.2111\n",
" posterior p0: 0.058605\n",
" posterior al-feat: -0.12528\n",
" size counts: 2676\n",
" 1 model al-feat: -0.131618 (tension=4.41288)\n",
" 2 model al-feat: -0.129394 (tension=4.53964)\n",
" 3 model al-feat: -0.12798 (tension=4.62192)\n",
" 4 model al-feat: -0.127065 (tension=4.67592)\n",
" 5 model al-feat: -0.126465 (tension=4.7116)\n",
" 6 model al-feat: -0.126069 (tension=4.73529)\n",
" 7 model al-feat: -0.125807 (tension=4.75106)\n",
" 8 model al-feat: -0.125632 (tension=4.76158)\n",
" final tension: 4.76861\n",
"ITERATION 5 (FINAL)\n",
".................................................. [50000]\n",
"...............................................\n",
" log_e likelihood: -8.39616e+06\n",
" log_2 likelihood: -1.21131e+07\n",
" cross entropy: 6.01727\n",
" perplexity: 64.7709\n",
" posterior p0: 0\n",
" posterior al-feat: 0\n",
" size counts: 2676\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "_YFtSFy2gHgn",
"colab_type": "text"
},
"source": [
"## Corpus Filtering"
]
},
{
"cell_type": "code",
"metadata": {
"id": "4qshK1wnggKM",
"colab_type": "code",
"outputId": "e5279e1d-de8a-46e4-ee5e-c739258dbb25",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 258
}
},
"source": [
"# add word alignment scores into the common dataframe\n",
"scores = []\n",
"with open('forward.align') as f:\n",
" for _, line in enumerate(f):\n",
" scores.append(float(line.split(' ||| ')[-1]))\n",
"\n",
"common['scores'] = scores\n",
"common.head()"
],
"execution_count": 0,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>source_sentence</th>\n",
" <th>target_sentence</th>\n",
" <th>combined</th>\n",
" <th>scores</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Table of Contents</td>\n",
" <td>Iala – mu</td>\n",
" <td>Table of Contents ||| Iala – mu</td>\n",
" <td>-6.44585</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>December 1 , 2010</td>\n",
" <td>1 Ua Katatu Ua 2011</td>\n",
" <td>December 1 , 2010 ||| 1 Ua Katatu Ua 2011</td>\n",
" <td>-26.63540</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Who Inhabit the Spirit Realm ?</td>\n",
" <td>O Kuiala ku Diulu Kuene Muene Athu mu Nzumbi</td>\n",
" <td>Who Inhabit the Spirit Realm ? ||| O Kuiala ku...</td>\n",
" <td>-32.64520</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>FROM OUR COVER</td>\n",
" <td>TU SANGA - MU UÉ MILONGI ÍII</td>\n",
" <td>FROM OUR COVER ||| TU SANGA - MU UÉ MILONGI ÍII</td>\n",
" <td>-17.60530</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>3 Someone Is Out There — But Who ?</td>\n",
" <td>3 Kuene Athu mu Nzumbi — a Nanhi ?</td>\n",
" <td>3 Someone Is Out There — But Who ? ||| 3 Kue...</td>\n",
" <td>-34.61690</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" source_sentence ... scores\n",
"0 Table of Contents ... -6.44585\n",
"1 December 1 , 2010 ... -26.63540\n",
"2 Who Inhabit the Spirit Realm ? ... -32.64520\n",
"3 FROM OUR COVER ... -17.60530\n",
"4 3 Someone Is Out There — But Who ? ... -34.61690\n",
"\n",
"[5 rows x 4 columns]"
]
},
"metadata": {
"tags": []
},
"execution_count": 15
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "jhWPxbK0kyBP",
"colab_type": "code",
"outputId": "cfb2c28e-57b2-489c-ec1e-545f3ffe3edd",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 300
}
},
"source": [
"common.describe()"
],
"execution_count": 0,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>scores</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td>97218.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>mean</th>\n",
" <td>-89.522981</td>\n",
" </tr>\n",
" <tr>\n",
" <th>std</th>\n",
" <td>59.855089</td>\n",
" </tr>\n",
" <tr>\n",
" <th>min</th>\n",
" <td>-1106.860000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25%</th>\n",
" <td>-119.555000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50%</th>\n",
" <td>-79.433800</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75%</th>\n",
" <td>-47.867900</td>\n",
" </tr>\n",
" <tr>\n",
" <th>max</th>\n",
" <td>-1.122730</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" scores\n",
"count 97218.000000\n",
"mean -89.522981\n",
"std 59.855089\n",
"min -1106.860000\n",
"25% -119.555000\n",
"50% -79.433800\n",
"75% -47.867900\n",
"max -1.122730"
]
},
"metadata": {
"tags": []
},
"execution_count": 16
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "PB9t9Zt7k9Ps",
"colab_type": "code",
"colab": {}
},
"source": [
"# cut out anything below the 0.1 quantile (really bad)\n",
"threshold = common.quantile(0.1, axis=0)['scores']\n",
"common_clean = common[common['scores'] > threshold]"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "_PF8Z7UylbsW",
"colab_type": "code",
"outputId": "64f7e6cf-74f5-4782-af2a-358981d9e24b",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 34
}
},
"source": [
"# how many did we lose?\n",
"len(common_clean)/len(common)"
],
"execution_count": 0,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"0.8999979427678002"
]
},
"metadata": {
"tags": []
},
"execution_count": 18
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "WvH3ugvylv7v",
"colab_type": "text"
},
"source": [
"## Other pre-processing"
]
},
{
"cell_type": "code",
"metadata": {
"id": "LK1AiflclpdM",
"colab_type": "code",
"outputId": "d54bf3bb-3f7c-45d4-f2ef-947aae6d3188",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 34
}
},
"source": [
"# drop test data from common\n",
"df_pp = common_clean[~common_clean['source_sentence'].isin(df_test['source_sentence'].values)]\n",
"df_pp = df_pp[~df_pp['target_sentence'].isin(df_test['target_sentence'].values)]\n",
"\n",
"# remove duplicates\n",
"df_pp.drop_duplicates(inplace=True)\n",
"\n",
"# remove conflicting translations\n",
"df_pp.drop_duplicates(subset='source_sentence', inplace=True)\n",
"df_pp.drop_duplicates(subset='target_sentence', inplace=True)\n",
"\n",
"# what's left in terms of number of samples?\n",
"len(df_pp)/len(common)"
],
"execution_count": 0,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"0.8135530457322718"
]
},
"metadata": {
"tags": []
},
"execution_count": 19
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "iGYR610PxdGK",
"colab_type": "code",
"colab": {}
},
"source": [
"# reset the index of the training set after filtering\n",
"df_pp.reset_index(drop=False, inplace=True)"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "_IuSBECCoDsW",
"colab_type": "code",
"outputId": "beca0972-aeb1-484d-f5b7-dd4218fc7be2",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
}
},
"source": [
"# Remove samples from the training data set if they \"almost overlap\" with the\n",
"# samples in the test set.\n",
"\n",
"# Filtering function. Adjust pad to narrow down the candidate matches to\n",
"# within a certain length of characters of the given sample.\n",
"def fuzzfilter(sample, candidates, pad):\n",
" candidates = [x for x in candidates if len(x) <= len(sample)+pad and len(x) >= len(sample)-pad] \n",
" #candidates = [x for x in candidates if len(x) >= len(sample)-pad]\n",
" if len(candidates) > 0:\n",
" return process.extractOne(sample, candidates)[1]\n",
" else:\n",
" return np.nan\n",
"\n",
"# NOTE - This might run slow depending on the size of your training set. We are\n",
"# printing some information to help you track how long it would take. \n",
"eng_test = df_test['source_sentence'].values.tolist()\n",
"scores = []\n",
"start_time = time.time()\n",
"for idx, row in df_pp.iterrows():\n",
" scores.append(fuzzfilter(row['source_sentence'], eng_test, 5))\n",
" if idx % 1000 == 0:\n",
" hours, rem = divmod(time.time() - start_time, 3600)\n",
" minutes, seconds = divmod(rem, 60)\n",
" print(\"{:0>2}:{:0>2}:{:05.2f}\".format(int(hours),int(minutes),seconds), \"%0.2f percent complete\" % (100.0*float(idx)/float(len(df_pp))))"
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"00:00:00.02 0.00 percent complete\n",
"00:00:15.99 1.26 percent complete\n",
"00:00:31.60 2.53 percent complete\n",
"00:00:46.84 3.79 percent complete\n",
"00:01:02.81 5.06 percent complete\n",
"00:01:18.16 6.32 percent complete\n",
"00:01:33.57 7.59 percent complete\n",
"00:01:48.58 8.85 percent complete\n",
"00:02:04.89 10.11 percent complete\n",
"00:02:21.35 11.38 percent complete\n",
"00:02:36.99 12.64 percent complete\n",
"00:02:52.40 13.91 percent complete\n",
"00:03:07.66 15.17 percent complete\n",
"00:03:23.21 16.44 percent complete\n",
"00:03:38.89 17.70 percent complete\n",
"00:03:54.36 18.97 percent complete\n",
"00:04:10.44 20.23 percent complete\n",
"00:04:26.39 21.49 percent complete\n",
"00:04:43.23 22.76 percent complete\n",
"00:04:59.46 24.02 percent complete\n",
"00:05:16.05 25.29 percent complete\n",
"00:05:31.91 26.55 percent complete\n",
"00:05:48.36 27.82 percent complete\n",
"00:06:04.70 29.08 percent complete\n",
"00:06:21.21 30.34 percent complete\n",
"00:06:37.73 31.61 percent complete\n",
"00:06:53.93 32.87 percent complete\n",
"00:07:10.20 34.14 percent complete\n",
"00:07:26.56 35.40 percent complete\n",
"00:07:42.11 36.67 percent complete\n",
"00:07:58.07 37.93 percent complete\n",
"00:08:14.06 39.19 percent complete\n",
"00:08:29.90 40.46 percent complete\n",
"00:08:46.04 41.72 percent complete\n",
"00:09:02.80 42.99 percent complete\n",
"00:09:19.59 44.25 percent complete\n",
"00:09:35.92 45.52 percent complete\n",
"00:09:51.77 46.78 percent complete\n",
"00:10:08.14 48.05 percent complete\n",
"00:10:24.54 49.31 percent complete\n",
"00:10:40.48 50.57 percent complete\n",
"00:10:56.29 51.84 percent complete\n",
"00:11:12.00 53.10 percent complete\n",
"00:11:29.30 54.37 percent complete\n",
"00:11:46.04 55.63 percent complete\n",
"00:12:02.19 56.90 percent complete\n",
"00:12:17.97 58.16 percent complete\n",
"00:12:35.13 59.42 percent complete\n",
"00:12:50.94 60.69 percent complete\n",
"00:13:06.72 61.95 percent complete\n",
"00:13:23.85 63.22 percent complete\n",
"00:13:42.28 64.48 percent complete\n",
"00:13:59.85 65.75 percent complete\n",
"00:14:17.12 67.01 percent complete\n",
"00:14:34.22 68.27 percent complete\n",
"00:14:51.67 69.54 percent complete\n",
"00:15:08.71 70.80 percent complete\n",
"00:15:25.66 72.07 percent complete\n",
"00:15:43.60 73.33 percent complete\n",
"00:16:00.66 74.60 percent complete\n",
"00:16:17.58 75.86 percent complete\n",
"00:16:34.54 77.13 percent complete\n",
"00:16:51.25 78.39 percent complete\n",
"00:17:08.11 79.65 percent complete\n",
"00:17:25.00 80.92 percent complete\n",
"00:17:41.94 82.18 percent complete\n",
"00:17:58.92 83.45 percent complete\n",
"00:18:17.12 84.71 percent complete\n",
"00:18:34.94 85.98 percent complete\n",
"00:18:52.80 87.24 percent complete\n",
"00:19:09.40 88.50 percent complete\n",
"00:19:26.94 89.77 percent complete\n",
"00:19:43.81 91.03 percent complete\n",
"00:20:01.44 92.30 percent complete\n",
"00:20:18.72 93.56 percent complete\n",
"00:20:35.76 94.83 percent complete\n",
"00:20:53.76 96.09 percent complete\n",
"00:21:11.23 97.35 percent complete\n",
"00:21:28.30 98.62 percent complete\n",
"00:21:45.93 99.88 percent complete\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "uBgUuWVX8V13",
"colab_type": "code",
"outputId": "c65da7a6-f253-4389-b3fb-9c9bcae047c7",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 34
}
},
"source": [
"# Filter out \"almost overlapping samples\"\n",
"df_pp['scores'] = scores\n",
"df_pp = df_pp[df_pp['scores'] < 95]\n",
"\n",
"# what's left in terms of number of samples?\n",
"len(df_pp)/len(common)"
],
"execution_count": 0,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"0.7892982780966488"
]
},
"metadata": {
"tags": []
},
"execution_count": 22
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "RdHgU5xrmOKz",
"colab_type": "code",
"colab": {}
},
"source": [
"## Lower case the corpus\n",
"df_pp[\"source_sentence\"] = df_pp[\"source_sentence\"].str.lower()\n",
"df_pp[\"target_sentence\"] = df_pp[\"target_sentence\"].str.lower()\n",
"df_test[\"source_sentence\"] = df_test[\"source_sentence\"].str.lower()\n",
"df_test[\"target_sentence\"] = df_test[\"target_sentence\"].str.lower()\n",
"\n",
"# shuffle the training/dev data\n",
"df_pp = df_pp.sample(frac=1).reset_index(drop=True)\n",
"\n",
"# Do the split between dev/train\n",
"num_dev_patterns = 1000\n",
"dev = df_pp.tail(num_dev_patterns)\n",
"stripped = df_pp.drop(df_pp.tail(num_dev_patterns).index)\n",
"\n",
"# output the final parallel corpus files\n",
"with open(\"train.\"+source_language, \"w\") as src_file, open(\"train.\"+target_language, \"w\") as trg_file:\n",
" for index, row in stripped.iterrows():\n",
" src_file.write(row[\"source_sentence\"]+\"\\n\")\n",
" trg_file.write(row[\"target_sentence\"]+\"\\n\")\n",
" \n",
"with open(\"dev.\"+source_language, \"w\") as src_file, open(\"dev.\"+target_language, \"w\") as trg_file:\n",
" for index, row in dev.iterrows():\n",
" src_file.write(row[\"source_sentence\"]+\"\\n\")\n",
" trg_file.write(row[\"target_sentence\"]+\"\\n\")\n",
"\n",
"with open(\"test.\"+source_language, \"w\") as src_file, open(\"test.\"+target_language, \"w\") as trg_file:\n",
" for index, row in df_test.iterrows():\n",
" src_file.write(row[\"source_sentence\"]+\"\\n\")\n",
" trg_file.write(row[\"target_sentence\"]+\"\\n\")"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "WugPZnZ_mv5H",
"colab_type": "code",
"outputId": "d126a0ce-ec38-4751-c459-c2569fb052e0",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 211
}
},
"source": [
"! head train.en"
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"some may feel that they do not need anyone to explain the bible to them .\n",
"most of us have very busy lives , but we should not let anything , including our responsibilities , stop us from reading the bible .\n",
"giving may also lower stress and blood pressure .\n",
"jehovah created all things\n",
"but what can be done if the marital bond is strained ?\n",
"( b ) explain how it became clear that the governing body was different from the watch tower society .\n",
"this issue of the watchtower examines the bible’s claim that it can guide us in every aspect of life .\n",
"then you throw them out onto the ground all at once .\n",
"having no arms , i can fully empathize with those who have limitations .\n",
"but even in such a situation , a wife will do what she can to teach her children the truth .\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "N9lWcwN2m0O2",
"colab_type": "code",
"outputId": "1e9a1f52-de8f-4ce1-e00e-f731d1c1c121",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 211
}
},
"source": [
"! head train.kmb"
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"nange sai athu a banza kuila , ka bhingi muthu phala ku a jimbuluila o milongi ia bibidia .\n",
"( josuué 1 : 8 ) tuala ni ikalakalu iavulu , kidi muene , maji ki tua tokala kuehela kima ku tu fidisa kutanga o bibidia , né muene o salu ietu .\n",
"o kubhana ku tu kuatekesa ue kusosolola o kuthandanganha , ni kulenga kua manhinga mu mixibha ietu .\n",
"mukonda jihova , muéne ua bhange o ima ioso\n",
"maji ihi ia tokala o ku bhanga se mu ukaza mu moneka maka ?\n",
"( b ) jimbulula kiebhi o jiphange kiéza mu kuijiia kuila , o kibuka kia utuminu ki ki lungile ni sociedade torre de vigia .\n",
"o kadivulu kaka o mulangidi , ka - nda zuela se kiebhi o milongi ia bibidia i tena ku tu kuatekesa ku muenhu uetu lelu .\n",
"eie u ji lundulula joso bhoxi .\n",
"mukonda dia kukamba o maku , ngi tena kuivua o ndolo ivua ió ala uá ni unema .\n",
"né muene mu ithangana kála iii , o muhatu ua bhingi kubhanga ioso , phala kulonga o itumu ia jihova ku tuana tuê .\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "eNbaZnhznC8-",
"colab_type": "text"
},
"source": [
"## Subword BPE Tokens"
]
},
{
"cell_type": "code",
"metadata": {
"id": "PlSQH_bQm82c",
"colab_type": "code",
"outputId": "4dfde776-d0e2-4208-827b-75faac7f5740",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 384
}
},
"source": [
"# Do BPE\n",
"! subword-nmt learn-joint-bpe-and-vocab --input train.$src train.$tgt -s 4000 -o bpe.codes.4000 --write-vocabulary vocab.$src vocab.$tgt\n",
"\n",
"! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$src < train.$src > train.bpe.$src\n",
"! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$tgt < train.$tgt > train.bpe.$tgt\n",
"! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$src < dev.$src > dev.bpe.$src\n",
"! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$tgt < dev.$tgt > dev.bpe.$tgt\n",
"! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$src < test.$src > test.bpe.$src\n",
"! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$tgt < test.$tgt > test.bpe.$tgt\n",
"\n",
"# Create directory, move everyone we care about to the correct location\n",
"! mkdir -p $data_path\n",
"! cp train.* $data_path\n",
"! cp test.* $data_path\n",
"! cp dev.* $data_path\n",
"! cp bpe.codes.4000 $data_path\n",
"! ls $data_path\n",
"\n",
"# Create that vocab using build_vocab\n",
"! sudo chmod 777 joeynmt/scripts/build_vocab.py\n",
"! joeynmt/scripts/build_vocab.py joeynmt/data/$src$tgt/train.bpe.$src joeynmt/data/$src$tgt/train.bpe.$tgt --output_path joeynmt/data/$src$tgt/vocab.txt\n",
"\n",
"# Some output\n",
"! echo \"BPE Target Sentences\"\n",
"! tail -n 5 test.bpe.$tgt\n",
"! echo \"Combined BPE Vocab\"\n",
"! tail -n 10 joeynmt/data/en$tgt/vocab.txt"
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"bpe.codes.4000\tdev.en\t test.bpe.kmb train.bpe.en train.kmb\n",
"dev.bpe.en\tdev.kmb test.en\t train.bpe.kmb\n",
"dev.bpe.kmb\ttest.bpe.en test.kmb\t train.en\n",
"BPE Target Sentences\n",
"o ngu@@ b@@ u ya ku@@ xikana ( tala o kaxi 12 - 14 )\n",
"o ka@@ pas@@ ete ka kubh@@ uluka ( tala o kaxi 15 - 18 )\n",
"nga mono kwila o athu a xikina dingi se a mona kwila ey@@ e wa zolo mwene o bibidya , wa mu bhanga yoso i u tena phala ku a kwatekesa . ”\n",
"o xi@@ bhata ya nzumbi ikôla ( tala o kaxi 19 - 20 )\n",
"ni ki@@ kwat@@ ek@@ esu kya jihova tu tena kubh@@ ânga nê !\n",
"Combined BPE Vocab\n",
"urrec@@\n",
"pher@@\n",
"danii@@\n",
"espe@@\n",
"enhu\n",
"ould\n",
"beh@@\n",
"paradi@@\n",
"effor@@\n",
"kobo\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "mox2nEPXnnOe",
"colab_type": "text"
},
"source": [
"## JoeyNMT Config"
]
},
{
"cell_type": "code",
"metadata": {
"id": "ugHbYjQPnNo4",
"colab_type": "code",
"colab": {}
},
"source": [
"# This creates the config file for our JoeyNMT system. \n",
"name = '%s%s' % (source_language, target_language)\n",
"\n",
"config = \"\"\"\n",
"name: \"{name}_transformer\"\n",
"\n",
"data:\n",
" src: \"{source_language}\"\n",
" trg: \"{target_language}\"\n",
" train: \"data/{name}/train.bpe\"\n",
" dev: \"data/{name}/dev.bpe\"\n",
" test: \"data/{name}/test.bpe\"\n",
" level: \"bpe\"\n",
" lowercase: False\n",
" max_sent_length: 100\n",
" src_vocab: \"data/{name}/vocab.txt\"\n",
" trg_vocab: \"data/{name}/vocab.txt\"\n",
"\n",
"testing:\n",
" beam_size: 5\n",
" alpha: 1.0\n",
"\n",
"training:\n",
" #load_model: \"models/{name}_transformer/12000.ckpt\" # if given, load a pre-trained model from this checkpoint\n",
" random_seed: 42\n",
" optimizer: \"adam\"\n",
" normalization: \"tokens\"\n",
" adam_betas: [0.9, 0.999] \n",
" scheduling: \"noam\" # Try switching from plateau to Noam scheduling\n",
" learning_rate_factor: 0.5 # factor for Noam scheduler (used with Transformer)\n",
" learning_rate_warmup: 1000 # warmup steps for Noam scheduler (used with Transformer)\n",
" patience: 8\n",
" decrease_factor: 0.7\n",
" loss: \"crossentropy\"\n",
" learning_rate: 0.0002\n",
" learning_rate_min: 0.00000001\n",
" weight_decay: 0.0\n",
" label_smoothing: 0.1\n",
" batch_size: 4096\n",
" batch_type: \"token\"\n",
" eval_batch_size: 3600\n",
" eval_batch_type: \"token\"\n",
" batch_multiplier: 1\n",
" early_stopping_metric: \"eval_metric\" # \"ppl\"\n",
" epochs: 40\n",
" validation_freq: 2000\n",
" logging_freq: 200\n",
" eval_metric: \"bleu\"\n",
" model_dir: \"models/{name}_transformer\"\n",
" overwrite: True\n",
" shuffle: True\n",
" use_cuda: True\n",
" max_output_length: 100\n",
" print_valid_sents: [0, 1, 2, 3]\n",
" keep_last_ckpts: 3\n",
"\n",
"model:\n",
" initializer: \"xavier\"\n",
" bias_initializer: \"zeros\"\n",
" init_gain: 1.0\n",
" embed_initializer: \"xavier\"\n",
" embed_init_gain: 1.0\n",
" tied_embeddings: True\n",
" tied_softmax: True\n",
" encoder:\n",
" type: \"transformer\"\n",
" num_layers: 6\n",
" num_heads: 8\n",
" embeddings:\n",
" embedding_dim: 512\n",
" scale: True\n",
" dropout: 0.\n",
" # typically ff_size = 4 x hidden_size\n",
" hidden_size: 512\n",
" ff_size: 2048\n",
" dropout: 0.3\n",
" decoder:\n",
" type: \"transformer\"\n",
" num_layers: 6\n",
" num_heads: 8\n",
" embeddings:\n",
" embedding_dim: 512\n",
" scale: True\n",
" dropout: 0.\n",
" # typically ff_size = 4 x hidden_size\n",
" hidden_size: 512\n",
" ff_size: 2048\n",
" dropout: 0.3\n",
"\"\"\".format(name=name, source_language=source_language, target_language=target_language)\n",
"with open(\"joeynmt/configs/transformer_{name}.yaml\".format(name=name),'w') as f:\n",
" f.write(config)"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "eNQ_9LO4n04W",
"colab_type": "text"
},
"source": [
"## Train the model"
]
},
{
"cell_type": "code",
"metadata": {
"id": "hWwNavEHnxs8",
"colab_type": "code",
"outputId": "8e3ac93f-5914-49f1-afd9-5b452e19b4e8",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
}
},
"source": [
"!cd joeynmt; python3 -m joeynmt train configs/transformer_$src$tgt.yaml"
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"2020-02-04 19:34:52,715 Hello! This is Joey-NMT.\n",
"2020-02-04 19:34:54,040 Total params: 46249984\n",
"2020-02-04 19:34:54,042 Trainable parameters: ['decoder.layer_norm.bias', 'decoder.layer_norm.weight', 'decoder.layers.0.dec_layer_norm.bias', 'decoder.layers.0.dec_layer_norm.weight', 'decoder.layers.0.feed_forward.layer_norm.bias', 'decoder.layers.0.feed_forward.layer_norm.weight', 'decoder.layers.0.feed_forward.pwff_layer.0.bias', 'decoder.layers.0.feed_forward.pwff_layer.0.weight', 'decoder.layers.0.feed_forward.pwff_layer.3.bias', 'decoder.layers.0.feed_forward.pwff_layer.3.weight', 'decoder.layers.0.src_trg_att.k_layer.bias', 'decoder.layers.0.src_trg_att.k_layer.weight', 'decoder.layers.0.src_trg_att.output_layer.bias', 'decoder.layers.0.src_trg_att.output_layer.weight', 'decoder.layers.0.src_trg_att.q_layer.bias', 'decoder.layers.0.src_trg_att.q_layer.weight', 'decoder.layers.0.src_trg_att.v_layer.bias', 'decoder.layers.0.src_trg_att.v_layer.weight', 'decoder.layers.0.trg_trg_att.k_layer.bias', 'decoder.layers.0.trg_trg_att.k_layer.weight', 'decoder.layers.0.trg_trg_att.output_layer.bias', 'decoder.layers.0.trg_trg_att.output_layer.weight', 'decoder.layers.0.trg_trg_att.q_layer.bias', 'decoder.layers.0.trg_trg_att.q_layer.weight', 'decoder.layers.0.trg_trg_att.v_layer.bias', 'decoder.layers.0.trg_trg_att.v_layer.weight', 'decoder.layers.0.x_layer_norm.bias', 'decoder.layers.0.x_layer_norm.weight', 'decoder.layers.1.dec_layer_norm.bias', 'decoder.layers.1.dec_layer_norm.weight', 'decoder.layers.1.feed_forward.layer_norm.bias', 'decoder.layers.1.feed_forward.layer_norm.weight', 'decoder.layers.1.feed_forward.pwff_layer.0.bias', 'decoder.layers.1.feed_forward.pwff_layer.0.weight', 'decoder.layers.1.feed_forward.pwff_layer.3.bias', 'decoder.layers.1.feed_forward.pwff_layer.3.weight', 'decoder.layers.1.src_trg_att.k_layer.bias', 'decoder.layers.1.src_trg_att.k_layer.weight', 'decoder.layers.1.src_trg_att.output_layer.bias', 'decoder.layers.1.src_trg_att.output_layer.weight', 'decoder.layers.1.src_trg_att.q_layer.bias', 'decoder.layers.1.src_trg_att.q_layer.weight', 'decoder.layers.1.src_trg_att.v_layer.bias', 'decoder.layers.1.src_trg_att.v_layer.weight', 'decoder.layers.1.trg_trg_att.k_layer.bias', 'decoder.layers.1.trg_trg_att.k_layer.weight', 'decoder.layers.1.trg_trg_att.output_layer.bias', 'decoder.layers.1.trg_trg_att.output_layer.weight', 'decoder.layers.1.trg_trg_att.q_layer.bias', 'decoder.layers.1.trg_trg_att.q_layer.weight', 'decoder.layers.1.trg_trg_att.v_layer.bias', 'decoder.layers.1.trg_trg_att.v_layer.weight', 'decoder.layers.1.x_layer_norm.bias', 'decoder.layers.1.x_layer_norm.weight', 'decoder.layers.2.dec_layer_norm.bias', 'decoder.layers.2.dec_layer_norm.weight', 'decoder.layers.2.feed_forward.layer_norm.bias', 'decoder.layers.2.feed_forward.layer_norm.weight', 'decoder.layers.2.feed_forward.pwff_layer.0.bias', 'decoder.layers.2.feed_forward.pwff_layer.0.weight', 'decoder.layers.2.feed_forward.pwff_layer.3.bias', 'decoder.layers.2.feed_forward.pwff_layer.3.weight', 'decoder.layers.2.src_trg_att.k_layer.bias', 'decoder.layers.2.src_trg_att.k_layer.weight', 'decoder.layers.2.src_trg_att.output_layer.bias', 'decoder.layers.2.src_trg_att.output_layer.weight', 'decoder.layers.2.src_trg_att.q_layer.bias', 'decoder.layers.2.src_trg_att.q_layer.weight', 'decoder.layers.2.src_trg_att.v_layer.bias', 'decoder.layers.2.src_trg_att.v_layer.weight', 'decoder.layers.2.trg_trg_att.k_layer.bias', 'decoder.layers.2.trg_trg_att.k_layer.weight', 'decoder.layers.2.trg_trg_att.output_layer.bias', 'decoder.layers.2.trg_trg_att.output_layer.weight', 'decoder.layers.2.trg_trg_att.q_layer.bias', 'decoder.layers.2.trg_trg_att.q_layer.weight', 'decoder.layers.2.trg_trg_att.v_layer.bias', 'decoder.layers.2.trg_trg_att.v_layer.weight', 'decoder.layers.2.x_layer_norm.bias', 'decoder.layers.2.x_layer_norm.weight', 'decoder.layers.3.dec_layer_norm.bias', 'decoder.layers.3.dec_layer_norm.weight', 'decoder.layers.3.feed_forward.layer_norm.bias', 'decoder.layers.3.feed_forward.layer_norm.weight', 'decoder.layers.3.feed_forward.pwff_layer.0.bias', 'decoder.layers.3.feed_forward.pwff_layer.0.weight', 'decoder.layers.3.feed_forward.pwff_layer.3.bias', 'decoder.layers.3.feed_forward.pwff_layer.3.weight', 'decoder.layers.3.src_trg_att.k_layer.bias', 'decoder.layers.3.src_trg_att.k_layer.weight', 'decoder.layers.3.src_trg_att.output_layer.bias', 'decoder.layers.3.src_trg_att.output_layer.weight', 'decoder.layers.3.src_trg_att.q_layer.bias', 'decoder.layers.3.src_trg_att.q_layer.weight', 'decoder.layers.3.src_trg_att.v_layer.bias', 'decoder.layers.3.src_trg_att.v_layer.weight', 'decoder.layers.3.trg_trg_att.k_layer.bias', 'decoder.layers.3.trg_trg_att.k_layer.weight', 'decoder.layers.3.trg_trg_att.output_layer.bias', 'decoder.layers.3.trg_trg_att.output_layer.weight', 'decoder.layers.3.trg_trg_att.q_layer.bias', 'decoder.layers.3.trg_trg_att.q_layer.weight', 'decoder.layers.3.trg_trg_att.v_layer.bias', 'decoder.layers.3.trg_trg_att.v_layer.weight', 'decoder.layers.3.x_layer_norm.bias', 'decoder.layers.3.x_layer_norm.weight', 'decoder.layers.4.dec_layer_norm.bias', 'decoder.layers.4.dec_layer_norm.weight', 'decoder.layers.4.feed_forward.layer_norm.bias', 'decoder.layers.4.feed_forward.layer_norm.weight', 'decoder.layers.4.feed_forward.pwff_layer.0.bias', 'decoder.layers.4.feed_forward.pwff_layer.0.weight', 'decoder.layers.4.feed_forward.pwff_layer.3.bias', 'decoder.layers.4.feed_forward.pwff_layer.3.weight', 'decoder.layers.4.src_trg_att.k_layer.bias', 'decoder.layers.4.src_trg_att.k_layer.weight', 'decoder.layers.4.src_trg_att.output_layer.bias', 'decoder.layers.4.src_trg_att.output_layer.weight', 'decoder.layers.4.src_trg_att.q_layer.bias', 'decoder.layers.4.src_trg_att.q_layer.weight', 'decoder.layers.4.src_trg_att.v_layer.bias', 'decoder.layers.4.src_trg_att.v_layer.weight', 'decoder.layers.4.trg_trg_att.k_layer.bias', 'decoder.layers.4.trg_trg_att.k_layer.weight', 'decoder.layers.4.trg_trg_att.output_layer.bias', 'decoder.layers.4.trg_trg_att.output_layer.weight', 'decoder.layers.4.trg_trg_att.q_layer.bias', 'decoder.layers.4.trg_trg_att.q_layer.weight', 'decoder.layers.4.trg_trg_att.v_layer.bias', 'decoder.layers.4.trg_trg_att.v_layer.weight', 'decoder.layers.4.x_layer_norm.bias', 'decoder.layers.4.x_layer_norm.weight', 'decoder.layers.5.dec_layer_norm.bias', 'decoder.layers.5.dec_layer_norm.weight', 'decoder.layers.5.feed_forward.layer_norm.bias', 'decoder.layers.5.feed_forward.layer_norm.weight', 'decoder.layers.5.feed_forward.pwff_layer.0.bias', 'decoder.layers.5.feed_forward.pwff_layer.0.weight', 'decoder.layers.5.feed_forward.pwff_layer.3.bias', 'decoder.layers.5.feed_forward.pwff_layer.3.weight', 'decoder.layers.5.src_trg_att.k_layer.bias', 'decoder.layers.5.src_trg_att.k_layer.weight', 'decoder.layers.5.src_trg_att.output_layer.bias', 'decoder.layers.5.src_trg_att.output_layer.weight', 'decoder.layers.5.src_trg_att.q_layer.bias', 'decoder.layers.5.src_trg_att.q_layer.weight', 'decoder.layers.5.src_trg_att.v_layer.bias', 'decoder.layers.5.src_trg_att.v_layer.weight', 'decoder.layers.5.trg_trg_att.k_layer.bias', 'decoder.layers.5.trg_trg_att.k_layer.weight', 'decoder.layers.5.trg_trg_att.output_layer.bias', 'decoder.layers.5.trg_trg_att.output_layer.weight', 'decoder.layers.5.trg_trg_att.q_layer.bias', 'decoder.layers.5.trg_trg_att.q_layer.weight', 'decoder.layers.5.trg_trg_att.v_layer.bias', 'decoder.layers.5.trg_trg_att.v_layer.weight', 'decoder.layers.5.x_layer_norm.bias', 'decoder.layers.5.x_layer_norm.weight', 'encoder.layer_norm.bias', 'encoder.layer_norm.weight', 'encoder.layers.0.feed_forward.layer_norm.bias', 'encoder.layers.0.feed_forward.layer_norm.weight', 'encoder.layers.0.feed_forward.pwff_layer.0.bias', 'encoder.layers.0.feed_forward.pwff_layer.0.weight', 'encoder.layers.0.feed_forward.pwff_layer.3.bias', 'encoder.layers.0.feed_forward.pwff_layer.3.weight', 'encoder.layers.0.layer_norm.bias', 'encoder.layers.0.layer_norm.weight', 'encoder.layers.0.src_src_att.k_layer.bias', 'encoder.layers.0.src_src_att.k_layer.weight', 'encoder.layers.0.src_src_att.output_layer.bias', 'encoder.layers.0.src_src_att.output_layer.weight', 'encoder.layers.0.src_src_att.q_layer.bias', 'encoder.layers.0.src_src_att.q_layer.weight', 'encoder.layers.0.src_src_att.v_layer.bias', 'encoder.layers.0.src_src_att.v_layer.weight', 'encoder.layers.1.feed_forward.layer_norm.bias', 'encoder.layers.1.feed_forward.layer_norm.weight', 'encoder.layers.1.feed_forward.pwff_layer.0.bias', 'encoder.layers.1.feed_forward.pwff_layer.0.weight', 'encoder.layers.1.feed_forward.pwff_layer.3.bias', 'encoder.layers.1.feed_forward.pwff_layer.3.weight', 'encoder.layers.1.layer_norm.bias', 'encoder.layers.1.layer_norm.weight', 'encoder.layers.1.src_src_att.k_layer.bias', 'encoder.layers.1.src_src_att.k_layer.weight', 'encoder.layers.1.src_src_att.output_layer.bias', 'encoder.layers.1.src_src_att.output_layer.weight', 'encoder.layers.1.src_src_att.q_layer.bias', 'encoder.layers.1.src_src_att.q_layer.weight', 'encoder.layers.1.src_src_att.v_layer.bias', 'encoder.layers.1.src_src_att.v_layer.weight', 'encoder.layers.2.feed_forward.layer_norm.bias', 'encoder.layers.2.feed_forward.layer_norm.weight', 'encoder.layers.2.feed_forward.pwff_layer.0.bias', 'encoder.layers.2.feed_forward.pwff_layer.0.weight', 'encoder.layers.2.feed_forward.pwff_layer.3.bias', 'encoder.layers.2.feed_forward.pwff_layer.3.weight', 'encoder.layers.2.layer_norm.bias', 'encoder.layers.2.layer_norm.weight', 'encoder.layers.2.src_src_att.k_layer.bias', 'encoder.layers.2.src_src_att.k_layer.weight', 'encoder.layers.2.src_src_att.output_layer.bias', 'encoder.layers.2.src_src_att.output_layer.weight', 'encoder.layers.2.src_src_att.q_layer.bias', 'encoder.layers.2.src_src_att.q_layer.weight', 'encoder.layers.2.src_src_att.v_layer.bias', 'encoder.layers.2.src_src_att.v_layer.weight', 'encoder.layers.3.feed_forward.layer_norm.bias', 'encoder.layers.3.feed_forward.layer_norm.weight', 'encoder.layers.3.feed_forward.pwff_layer.0.bias', 'encoder.layers.3.feed_forward.pwff_layer.0.weight', 'encoder.layers.3.feed_forward.pwff_layer.3.bias', 'encoder.layers.3.feed_forward.pwff_layer.3.weight', 'encoder.layers.3.layer_norm.bias', 'encoder.layers.3.layer_norm.weight', 'encoder.layers.3.src_src_att.k_layer.bias', 'encoder.layers.3.src_src_att.k_layer.weight', 'encoder.layers.3.src_src_att.output_layer.bias', 'encoder.layers.3.src_src_att.output_layer.weight', 'encoder.layers.3.src_src_att.q_layer.bias', 'encoder.layers.3.src_src_att.q_layer.weight', 'encoder.layers.3.src_src_att.v_layer.bias', 'encoder.layers.3.src_src_att.v_layer.weight', 'encoder.layers.4.feed_forward.layer_norm.bias', 'encoder.layers.4.feed_forward.layer_norm.weight', 'encoder.layers.4.feed_forward.pwff_layer.0.bias', 'encoder.layers.4.feed_forward.pwff_layer.0.weight', 'encoder.layers.4.feed_forward.pwff_layer.3.bias', 'encoder.layers.4.feed_forward.pwff_layer.3.weight', 'encoder.layers.4.layer_norm.bias', 'encoder.layers.4.layer_norm.weight', 'encoder.layers.4.src_src_att.k_layer.bias', 'encoder.layers.4.src_src_att.k_layer.weight', 'encoder.layers.4.src_src_att.output_layer.bias', 'encoder.layers.4.src_src_att.output_layer.weight', 'encoder.layers.4.src_src_att.q_layer.bias', 'encoder.layers.4.src_src_att.q_layer.weight', 'encoder.layers.4.src_src_att.v_layer.bias', 'encoder.layers.4.src_src_att.v_layer.weight', 'encoder.layers.5.feed_forward.layer_norm.bias', 'encoder.layers.5.feed_forward.layer_norm.weight', 'encoder.layers.5.feed_forward.pwff_layer.0.bias', 'encoder.layers.5.feed_forward.pwff_layer.0.weight', 'encoder.layers.5.feed_forward.pwff_layer.3.bias', 'encoder.layers.5.feed_forward.pwff_layer.3.weight', 'encoder.layers.5.layer_norm.bias', 'encoder.layers.5.layer_norm.weight', 'encoder.layers.5.src_src_att.k_layer.bias', 'encoder.layers.5.src_src_att.k_layer.weight', 'encoder.layers.5.src_src_att.output_layer.bias', 'encoder.layers.5.src_src_att.output_layer.weight', 'encoder.layers.5.src_src_att.q_layer.bias', 'encoder.layers.5.src_src_att.q_layer.weight', 'encoder.layers.5.src_src_att.v_layer.bias', 'encoder.layers.5.src_src_att.v_layer.weight', 'src_embed.lut.weight']\n",
"2020-02-04 19:35:03,901 cfg.name : enkmb_transformer\n",
"2020-02-04 19:35:03,901 cfg.data.src : en\n",
"2020-02-04 19:35:03,901 cfg.data.trg : kmb\n",
"2020-02-04 19:35:03,901 cfg.data.train : data/enkmb/train.bpe\n",
"2020-02-04 19:35:03,901 cfg.data.dev : data/enkmb/dev.bpe\n",
"2020-02-04 19:35:03,901 cfg.data.test : data/enkmb/test.bpe\n",
"2020-02-04 19:35:03,901 cfg.data.level : bpe\n",
"2020-02-04 19:35:03,901 cfg.data.lowercase : False\n",
"2020-02-04 19:35:03,901 cfg.data.max_sent_length : 100\n",
"2020-02-04 19:35:03,902 cfg.data.src_vocab : data/enkmb/vocab.txt\n",
"2020-02-04 19:35:03,902 cfg.data.trg_vocab : data/enkmb/vocab.txt\n",
"2020-02-04 19:35:03,902 cfg.testing.beam_size : 5\n",
"2020-02-04 19:35:03,902 cfg.testing.alpha : 1.0\n",
"2020-02-04 19:35:03,902 cfg.training.random_seed : 42\n",
"2020-02-04 19:35:03,902 cfg.training.optimizer : adam\n",
"2020-02-04 19:35:03,902 cfg.training.normalization : tokens\n",
"2020-02-04 19:35:03,902 cfg.training.adam_betas : [0.9, 0.999]\n",
"2020-02-04 19:35:03,902 cfg.training.scheduling : noam\n",
"2020-02-04 19:35:03,902 cfg.training.learning_rate_factor : 0.5\n",
"2020-02-04 19:35:03,902 cfg.training.learning_rate_warmup : 1000\n",
"2020-02-04 19:35:03,902 cfg.training.patience : 8\n",
"2020-02-04 19:35:03,902 cfg.training.decrease_factor : 0.7\n",
"2020-02-04 19:35:03,902 cfg.training.loss : crossentropy\n",
"2020-02-04 19:35:03,902 cfg.training.learning_rate : 0.0002\n",
"2020-02-04 19:35:03,902 cfg.training.learning_rate_min : 1e-08\n",
"2020-02-04 19:35:03,902 cfg.training.weight_decay : 0.0\n",
"2020-02-04 19:35:03,902 cfg.training.label_smoothing : 0.1\n",
"2020-02-04 19:35:03,902 cfg.training.batch_size : 4096\n",
"2020-02-04 19:35:03,902 cfg.training.batch_type : token\n",
"2020-02-04 19:35:03,902 cfg.training.eval_batch_size : 3600\n",
"2020-02-04 19:35:03,902 cfg.training.eval_batch_type : token\n",
"2020-02-04 19:35:03,902 cfg.training.batch_multiplier : 1\n",
"2020-02-04 19:35:03,902 cfg.training.early_stopping_metric : eval_metric\n",
"2020-02-04 19:35:03,902 cfg.training.epochs : 40\n",
"2020-02-04 19:35:03,902 cfg.training.validation_freq : 2000\n",
"2020-02-04 19:35:03,903 cfg.training.logging_freq : 200\n",
"2020-02-04 19:35:03,903 cfg.training.eval_metric : bleu\n",
"2020-02-04 19:35:03,903 cfg.training.model_dir : models/enkmb_transformer\n",
"2020-02-04 19:35:03,903 cfg.training.overwrite : True\n",
"2020-02-04 19:35:03,903 cfg.training.shuffle : True\n",
"2020-02-04 19:35:03,903 cfg.training.use_cuda : True\n",
"2020-02-04 19:35:03,903 cfg.training.max_output_length : 100\n",
"2020-02-04 19:35:03,903 cfg.training.print_valid_sents : [0, 1, 2, 3]\n",
"2020-02-04 19:35:03,903 cfg.training.keep_last_ckpts : 3\n",
"2020-02-04 19:35:03,903 cfg.model.initializer : xavier\n",
"2020-02-04 19:35:03,903 cfg.model.bias_initializer : zeros\n",
"2020-02-04 19:35:03,903 cfg.model.init_gain : 1.0\n",
"2020-02-04 19:35:03,903 cfg.model.embed_initializer : xavier\n",
"2020-02-04 19:35:03,903 cfg.model.embed_init_gain : 1.0\n",
"2020-02-04 19:35:03,903 cfg.model.tied_embeddings : True\n",
"2020-02-04 19:35:03,903 cfg.model.tied_softmax : True\n",
"2020-02-04 19:35:03,903 cfg.model.encoder.type : transformer\n",
"2020-02-04 19:35:03,903 cfg.model.encoder.num_layers : 6\n",
"2020-02-04 19:35:03,903 cfg.model.encoder.num_heads : 8\n",
"2020-02-04 19:35:03,903 cfg.model.encoder.embeddings.embedding_dim : 512\n",
"2020-02-04 19:35:03,903 cfg.model.encoder.embeddings.scale : True\n",
"2020-02-04 19:35:03,903 cfg.model.encoder.embeddings.dropout : 0.0\n",
"2020-02-04 19:35:03,903 cfg.model.encoder.hidden_size : 512\n",
"2020-02-04 19:35:03,903 cfg.model.encoder.ff_size : 2048\n",
"2020-02-04 19:35:03,903 cfg.model.encoder.dropout : 0.3\n",
"2020-02-04 19:35:03,903 cfg.model.decoder.type : transformer\n",
"2020-02-04 19:35:03,903 cfg.model.decoder.num_layers : 6\n",
"2020-02-04 19:35:03,903 cfg.model.decoder.num_heads : 8\n",
"2020-02-04 19:35:03,903 cfg.model.decoder.embeddings.embedding_dim : 512\n",
"2020-02-04 19:35:03,904 cfg.model.decoder.embeddings.scale : True\n",
"2020-02-04 19:35:03,904 cfg.model.decoder.embeddings.dropout : 0.0\n",
"2020-02-04 19:35:03,904 cfg.model.decoder.hidden_size : 512\n",
"2020-02-04 19:35:03,904 cfg.model.decoder.ff_size : 2048\n",
"2020-02-04 19:35:03,904 cfg.model.decoder.dropout : 0.3\n",
"2020-02-04 19:35:03,904 Data set sizes: \n",
"\ttrain 75734,\n",
"\tvalid 1000,\n",
"\ttest 2693\n",
"2020-02-04 19:35:03,904 First training example:\n",
"\t[SRC] some may feel that they do not need anyone to explain the bible to them .\n",
"\t[TRG] nange sai athu a banza kuila , ka bhingi muthu phala ku a jimb@@ ulu@@ ila o milongi ia bibidia .\n",
"2020-02-04 19:35:03,904 First 10 words (src): (0) <unk> (1) <pad> (2) <s> (3) </s> (4) , (5) . (6) o (7) ku (8) mu (9) a\n",
"2020-02-04 19:35:03,904 First 10 words (trg): (0) <unk> (1) <pad> (2) <s> (3) </s> (4) , (5) . (6) o (7) ku (8) mu (9) a\n",
"2020-02-04 19:35:03,904 Number of Src words (types): 4120\n",
"2020-02-04 19:35:03,905 Number of Trg words (types): 4120\n",
"2020-02-04 19:35:03,905 Model(\n",
"\tencoder=TransformerEncoder(num_layers=6, num_heads=8),\n",
"\tdecoder=TransformerDecoder(num_layers=6, num_heads=8),\n",
"\tsrc_embed=Embeddings(embedding_dim=512, vocab_size=4120),\n",
"\ttrg_embed=Embeddings(embedding_dim=512, vocab_size=4120))\n",
"2020-02-04 19:35:03,908 EPOCH 1\n",
"2020-02-04 19:36:07,411 Epoch 1 Step: 200 Batch Loss: 4.373751 Tokens per Sec: 7390, Lr: 0.000140\n",
"2020-02-04 19:37:16,614 Epoch 1 Step: 400 Batch Loss: 3.446606 Tokens per Sec: 6708, Lr: 0.000280\n",
"2020-02-04 19:38:25,797 Epoch 1 Step: 600 Batch Loss: 3.172154 Tokens per Sec: 6715, Lr: 0.000419\n",
"2020-02-04 19:39:09,436 Epoch 1: total training loss 2923.78\n",
"2020-02-04 19:39:09,436 EPOCH 2\n",
"2020-02-04 19:39:35,740 Epoch 2 Step: 800 Batch Loss: 3.004483 Tokens per Sec: 6665, Lr: 0.000559\n",
"2020-02-04 19:40:45,337 Epoch 2 Step: 1000 Batch Loss: 2.668867 Tokens per Sec: 6703, Lr: 0.000699\n",
"2020-02-04 19:41:55,230 Epoch 2 Step: 1200 Batch Loss: 2.925653 Tokens per Sec: 6683, Lr: 0.000638\n",
"2020-02-04 19:43:05,191 Epoch 2 Step: 1400 Batch Loss: 2.579067 Tokens per Sec: 6708, Lr: 0.000591\n",
"2020-02-04 19:43:22,214 Epoch 2: total training loss 1923.77\n",
"2020-02-04 19:43:22,214 EPOCH 3\n",
"2020-02-04 19:44:14,693 Epoch 3 Step: 1600 Batch Loss: 2.535758 Tokens per Sec: 6675, Lr: 0.000552\n",
"2020-02-04 19:45:24,087 Epoch 3 Step: 1800 Batch Loss: 2.087405 Tokens per Sec: 6751, Lr: 0.000521\n",
"2020-02-04 19:46:33,332 Epoch 3 Step: 2000 Batch Loss: 2.259302 Tokens per Sec: 6709, Lr: 0.000494\n",
"2020-02-04 19:47:00,454 Hooray! New best validation result [eval_metric]!\n",
"2020-02-04 19:47:00,454 Saving new checkpoint.\n",
"2020-02-04 19:47:02,115 Example #0\n",
"2020-02-04 19:47:02,116 \tSource: ( read philippians 2 : 5 - 8 . )\n",
"2020-02-04 19:47:02,116 \tReference: ( tanga filipe 2 : 5 - 8 . )\n",
"2020-02-04 19:47:02,116 \tHypothesis: ( tanga filipe 2 : 5 - 8 . )\n",
"2020-02-04 19:47:02,116 Example #1\n",
"2020-02-04 19:47:02,116 \tSource: today , more than ever before , there are so many things that can distract us .\n",
"2020-02-04 19:47:02,116 \tReference: lelu , kuene ima iavulu i tena ku tu landukisa , m’ukulu ndenge .\n",
"2020-02-04 19:47:02,117 \tHypothesis: lelu , kuene ima iavulu i tena ku tu kuatekesa .\n",
"2020-02-04 19:47:02,117 Example #2\n",
"2020-02-04 19:47:02,117 \tSource: the apostle paul warned about what can happen if we please ourselves first .\n",
"2020-02-04 19:47:02,117 \tReference: ( 1 nzuá 2 : 16 ) o poxolo phaulu ua tu dimuna ku ima i tena kubhita se tu suua ngó o ima i tua uabhela .\n",
"2020-02-04 19:47:02,117 \tHypothesis: o poxolo phaulu ua dimuna o ima i tu bhanga se tu bhanga .\n",
"2020-02-04 19:47:02,117 Example #3\n",
"2020-02-04 19:47:02,117 \tSource: what a privilege it is to live in these last days and to be part of jehovah’s incredible organization !\n",
"2020-02-04 19:47:02,117 \tReference: tua tokala ku lembalala izuua ioso kuila , ujitu ua dikota ku tokala mu kilunga kia jihova mu ixi , mu izuua isukidila - ku !\n",
"2020-02-04 19:47:02,117 \tHypothesis: o ujitu iú , u tena ku tu kuatekesa ku kala ni ukamba uambote ni jihova !\n",
"2020-02-04 19:47:02,117 Validation result (greedy) at epoch 3, step 2000: bleu: 14.86, loss: 47097.8398, ppl: 8.2633, duration: 28.7850s\n",
"2020-02-04 19:48:03,094 Epoch 3: total training loss 1615.38\n",
"2020-02-04 19:48:03,094 EPOCH 4\n",
"2020-02-04 19:48:11,783 Epoch 4 Step: 2200 Batch Loss: 2.120787 Tokens per Sec: 6459, Lr: 0.000471\n",
"2020-02-04 19:49:20,971 Epoch 4 Step: 2400 Batch Loss: 1.741877 Tokens per Sec: 6705, Lr: 0.000451\n",
"2020-02-04 19:50:30,588 Epoch 4 Step: 2600 Batch Loss: 2.465448 Tokens per Sec: 6751, Lr: 0.000433\n",
"2020-02-04 19:51:39,815 Epoch 4 Step: 2800 Batch Loss: 2.057468 Tokens per Sec: 6758, Lr: 0.000418\n",
"2020-02-04 19:52:14,527 Epoch 4: total training loss 1468.87\n",
"2020-02-04 19:52:14,527 EPOCH 5\n",
"2020-02-04 19:52:48,681 Epoch 5 Step: 3000 Batch Loss: 1.418909 Tokens per Sec: 6716, Lr: 0.000403\n",
"2020-02-04 19:53:57,999 Epoch 5 Step: 3200 Batch Loss: 1.938244 Tokens per Sec: 6788, Lr: 0.000391\n",
"2020-02-04 19:55:07,478 Epoch 5 Step: 3400 Batch Loss: 1.893386 Tokens per Sec: 6756, Lr: 0.000379\n",
"2020-02-04 19:56:16,738 Epoch 5 Step: 3600 Batch Loss: 1.922130 Tokens per Sec: 6749, Lr: 0.000368\n",
"2020-02-04 19:56:24,670 Epoch 5: total training loss 1360.27\n",
"2020-02-04 19:56:24,671 EPOCH 6\n",
"2020-02-04 19:57:26,127 Epoch 6 Step: 3800 Batch Loss: 1.733316 Tokens per Sec: 6793, Lr: 0.000358\n",
"2020-02-04 19:58:35,178 Epoch 6 Step: 4000 Batch Loss: 1.426156 Tokens per Sec: 6764, Lr: 0.000349\n",
"2020-02-04 19:59:03,345 Hooray! New best validation result [eval_metric]!\n",
"2020-02-04 19:59:03,345 Saving new checkpoint.\n",
"2020-02-04 19:59:04,958 Example #0\n",
"2020-02-04 19:59:04,959 \tSource: ( read philippians 2 : 5 - 8 . )\n",
"2020-02-04 19:59:04,959 \tReference: ( tanga filipe 2 : 5 - 8 . )\n",
"2020-02-04 19:59:04,959 \tHypothesis: ( tanga filipe 2 : 5 - 8 . )\n",
"2020-02-04 19:59:04,959 Example #1\n",
"2020-02-04 19:59:04,959 \tSource: today , more than ever before , there are so many things that can distract us .\n",
"2020-02-04 19:59:04,959 \tReference: lelu , kuene ima iavulu i tena ku tu landukisa , m’ukulu ndenge .\n",
"2020-02-04 19:59:04,960 \tHypothesis: lelu , kua bhingi dingi ima iavulu , phala ku tu kuatekesa ku dibhana ni maka enhá .\n",
"2020-02-04 19:59:04,960 Example #2\n",
"2020-02-04 19:59:04,960 \tSource: the apostle paul warned about what can happen if we please ourselves first .\n",
"2020-02-04 19:59:04,960 \tReference: ( 1 nzuá 2 : 16 ) o poxolo phaulu ua tu dimuna ku ima i tena kubhita se tu suua ngó o ima i tua uabhela .\n",
"2020-02-04 19:59:04,960 \tHypothesis: o poxolo phaulu ua tendelesa o ima ia - nda bhita se tu bhanga o ima ia iibha .\n",
"2020-02-04 19:59:04,960 Example #3\n",
"2020-02-04 19:59:04,960 \tSource: what a privilege it is to live in these last days and to be part of jehovah’s incredible organization !\n",
"2020-02-04 19:59:04,960 \tReference: tua tokala ku lembalala izuua ioso kuila , ujitu ua dikota ku tokala mu kilunga kia jihova mu ixi , mu izuua isukidila - ku !\n",
"2020-02-04 19:59:04,960 \tHypothesis: ujitu ua dikota ku kala ku muenhu mu izuua íii isukidila - ku , ni ku kala ni ukamba uambote ni jihova !\n",
"2020-02-04 19:59:04,960 Validation result (greedy) at epoch 6, step 4000: bleu: 20.91, loss: 39856.2031, ppl: 5.9722, duration: 29.7820s\n",
"2020-02-04 20:00:13,886 Epoch 6 Step: 4200 Batch Loss: 1.681094 Tokens per Sec: 6784, Lr: 0.000341\n",
"2020-02-04 20:01:04,062 Epoch 6: total training loss 1288.14\n",
"2020-02-04 20:01:04,062 EPOCH 7\n",
"2020-02-04 20:01:22,592 Epoch 7 Step: 4400 Batch Loss: 1.869816 Tokens per Sec: 6580, Lr: 0.000333\n",
"2020-02-04 20:02:32,112 Epoch 7 Step: 4600 Batch Loss: 1.868371 Tokens per Sec: 6776, Lr: 0.000326\n",
"2020-02-04 20:03:40,888 Epoch 7 Step: 4800 Batch Loss: 1.494951 Tokens per Sec: 6731, Lr: 0.000319\n",
"2020-02-04 20:04:49,964 Epoch 7 Step: 5000 Batch Loss: 1.940855 Tokens per Sec: 6738, Lr: 0.000313\n",
"2020-02-04 20:05:14,992 Epoch 7: total training loss 1217.81\n",
"2020-02-04 20:05:14,993 EPOCH 8\n",
"2020-02-04 20:05:59,350 Epoch 8 Step: 5200 Batch Loss: 1.924535 Tokens per Sec: 6736, Lr: 0.000306\n",
"2020-02-04 20:07:08,852 Epoch 8 Step: 5400 Batch Loss: 1.800949 Tokens per Sec: 6749, Lr: 0.000301\n",
"2020-02-04 20:08:17,863 Epoch 8 Step: 5600 Batch Loss: 1.651664 Tokens per Sec: 6767, Lr: 0.000295\n",
"2020-02-04 20:09:25,274 Epoch 8: total training loss 1154.32\n",
"2020-02-04 20:09:25,274 EPOCH 9\n",
"2020-02-04 20:09:26,981 Epoch 9 Step: 5800 Batch Loss: 1.459499 Tokens per Sec: 5603, Lr: 0.000290\n",
"2020-02-04 20:10:36,310 Epoch 9 Step: 6000 Batch Loss: 1.670126 Tokens per Sec: 6785, Lr: 0.000285\n",
"2020-02-04 20:11:02,199 Hooray! New best validation result [eval_metric]!\n",
"2020-02-04 20:11:02,199 Saving new checkpoint.\n",
"2020-02-04 20:11:03,924 Example #0\n",
"2020-02-04 20:11:03,924 \tSource: ( read philippians 2 : 5 - 8 . )\n",
"2020-02-04 20:11:03,924 \tReference: ( tanga filipe 2 : 5 - 8 . )\n",
"2020-02-04 20:11:03,924 \tHypothesis: ( tanga filipe 2 : 5 - 8 . )\n",
"2020-02-04 20:11:03,924 Example #1\n",
"2020-02-04 20:11:03,925 \tSource: today , more than ever before , there are so many things that can distract us .\n",
"2020-02-04 20:11:03,925 \tReference: lelu , kuene ima iavulu i tena ku tu landukisa , m’ukulu ndenge .\n",
"2020-02-04 20:11:03,925 \tHypothesis: lelu , kua kambe ngó bhofele , ande dia ku bhita o ima i tena ku tu landukisa .\n",
"2020-02-04 20:11:03,925 Example #2\n",
"2020-02-04 20:11:03,925 \tSource: the apostle paul warned about what can happen if we please ourselves first .\n",
"2020-02-04 20:11:03,925 \tReference: ( 1 nzuá 2 : 16 ) o poxolo phaulu ua tu dimuna ku ima i tena kubhita se tu suua ngó o ima i tua uabhela .\n",
"2020-02-04 20:11:03,925 \tHypothesis: o poxolo phaulu ua dimuna ia lungu ni ima i tu bhita na - iu , se tu bhanga o ima i tua mesena .\n",
"2020-02-04 20:11:03,925 Example #3\n",
"2020-02-04 20:11:03,925 \tSource: what a privilege it is to live in these last days and to be part of jehovah’s incredible organization !\n",
"2020-02-04 20:11:03,925 \tReference: tua tokala ku lembalala izuua ioso kuila , ujitu ua dikota ku tokala mu kilunga kia jihova mu ixi , mu izuua isukidila - ku !\n",
"2020-02-04 20:11:03,925 \tHypothesis: ujitu ua dikota ku kala mu izuua isukidila - ku , ni ku bhanga mbandu ku kilunga kia jihova !\n",
"2020-02-04 20:11:03,925 Validation result (greedy) at epoch 9, step 6000: bleu: 23.81, loss: 37121.8281, ppl: 5.2831, duration: 27.6148s\n",
"2020-02-04 20:12:12,509 Epoch 9 Step: 6200 Batch Loss: 1.229483 Tokens per Sec: 6730, Lr: 0.000281\n",
"2020-02-04 20:13:21,856 Epoch 9 Step: 6400 Batch Loss: 1.410562 Tokens per Sec: 6790, Lr: 0.000276\n",
"2020-02-04 20:14:03,446 Epoch 9: total training loss 1114.11\n",
"2020-02-04 20:14:03,446 EPOCH 10\n",
"2020-02-04 20:14:31,209 Epoch 10 Step: 6600 Batch Loss: 1.540644 Tokens per Sec: 6716, Lr: 0.000272\n",
"2020-02-04 20:15:39,776 Epoch 10 Step: 6800 Batch Loss: 1.627514 Tokens per Sec: 6744, Lr: 0.000268\n",
"2020-02-04 20:16:49,088 Epoch 10 Step: 7000 Batch Loss: 1.325339 Tokens per Sec: 6780, Lr: 0.000264\n",
"2020-02-04 20:17:58,791 Epoch 10 Step: 7200 Batch Loss: 1.359054 Tokens per Sec: 6726, Lr: 0.000260\n",
"2020-02-04 20:18:13,983 Epoch 10: total training loss 1072.73\n",
"2020-02-04 20:18:13,983 EPOCH 11\n",
"2020-02-04 20:19:07,831 Epoch 11 Step: 7400 Batch Loss: 1.427467 Tokens per Sec: 6722, Lr: 0.000257\n",
"2020-02-04 20:20:17,024 Epoch 11 Step: 7600 Batch Loss: 1.435952 Tokens per Sec: 6733, Lr: 0.000253\n",
"2020-02-04 20:21:26,239 Epoch 11 Step: 7800 Batch Loss: 1.629339 Tokens per Sec: 6752, Lr: 0.000250\n",
"2020-02-04 20:22:24,633 Epoch 11: total training loss 1036.26\n",
"2020-02-04 20:22:24,633 EPOCH 12\n",
"2020-02-04 20:22:35,411 Epoch 12 Step: 8000 Batch Loss: 1.378333 Tokens per Sec: 6642, Lr: 0.000247\n",
"2020-02-04 20:23:01,670 Hooray! New best validation result [eval_metric]!\n",
"2020-02-04 20:23:01,670 Saving new checkpoint.\n",
"2020-02-04 20:23:03,279 Example #0\n",
"2020-02-04 20:23:03,280 \tSource: ( read philippians 2 : 5 - 8 . )\n",
"2020-02-04 20:23:03,280 \tReference: ( tanga filipe 2 : 5 - 8 . )\n",
"2020-02-04 20:23:03,280 \tHypothesis: ( tanga filipe 2 : 5 - 8 . )\n",
"2020-02-04 20:23:03,280 Example #1\n",
"2020-02-04 20:23:03,280 \tSource: today , more than ever before , there are so many things that can distract us .\n",
"2020-02-04 20:23:03,280 \tReference: lelu , kuene ima iavulu i tena ku tu landukisa , m’ukulu ndenge .\n",
"2020-02-04 20:23:03,280 \tHypothesis: lelu , kua kambe ngó bhofele , ande dia ku bhita o ima ioso , saí ima iavulu i tena ku tu landukisa .\n",
"2020-02-04 20:23:03,280 Example #2\n",
"2020-02-04 20:23:03,280 \tSource: the apostle paul warned about what can happen if we please ourselves first .\n",
"2020-02-04 20:23:03,280 \tReference: ( 1 nzuá 2 : 16 ) o poxolo phaulu ua tu dimuna ku ima i tena kubhita se tu suua ngó o ima i tua uabhela .\n",
"2020-02-04 20:23:03,280 \tHypothesis: o poxolo phaulu ua dimuna o ima i tu bhita , se tu bhanga o ima i tua mesena .\n",
"2020-02-04 20:23:03,280 Example #3\n",
"2020-02-04 20:23:03,281 \tSource: what a privilege it is to live in these last days and to be part of jehovah’s incredible organization !\n",
"2020-02-04 20:23:03,281 \tReference: tua tokala ku lembalala izuua ioso kuila , ujitu ua dikota ku tokala mu kilunga kia jihova mu ixi , mu izuua isukidila - ku !\n",
"2020-02-04 20:23:03,281 \tHypothesis: ujitu ua dikota ku kala mu izuua isukidila - ku , ni ku bhanga mbandu ku kilunga kia jihova !\n",
"2020-02-04 20:23:03,281 Validation result (greedy) at epoch 12, step 8000: bleu: 25.00, loss: 35674.4961, ppl: 4.9511, duration: 27.8696s\n",
"2020-02-04 20:24:12,367 Epoch 12 Step: 8200 Batch Loss: 1.231285 Tokens per Sec: 6702, Lr: 0.000244\n",
"2020-02-04 20:25:21,048 Epoch 12 Step: 8400 Batch Loss: 1.578112 Tokens per Sec: 6722, Lr: 0.000241\n",
"2020-02-04 20:26:30,454 Epoch 12 Step: 8600 Batch Loss: 1.382758 Tokens per Sec: 6747, Lr: 0.000238\n",
"2020-02-04 20:27:03,588 Epoch 12: total training loss 1010.16\n",
"2020-02-04 20:27:03,589 EPOCH 13\n",
"2020-02-04 20:27:39,888 Epoch 13 Step: 8800 Batch Loss: 1.088220 Tokens per Sec: 6760, Lr: 0.000236\n",
"2020-02-04 20:28:49,663 Epoch 13 Step: 9000 Batch Loss: 1.332197 Tokens per Sec: 6763, Lr: 0.000233\n",
"2020-02-04 20:29:58,891 Epoch 13 Step: 9200 Batch Loss: 1.640509 Tokens per Sec: 6770, Lr: 0.000230\n",
"2020-02-04 20:31:08,391 Epoch 13 Step: 9400 Batch Loss: 1.451203 Tokens per Sec: 6703, Lr: 0.000228\n",
"2020-02-04 20:31:14,434 Epoch 13: total training loss 970.57\n",
"2020-02-04 20:31:14,434 EPOCH 14\n",
"2020-02-04 20:32:17,273 Epoch 14 Step: 9600 Batch Loss: 1.308440 Tokens per Sec: 6706, Lr: 0.000226\n",
"2020-02-04 20:33:25,976 Epoch 14 Step: 9800 Batch Loss: 1.202386 Tokens per Sec: 6760, Lr: 0.000223\n",
"2020-02-04 20:34:35,241 Epoch 14 Step: 10000 Batch Loss: 1.115765 Tokens per Sec: 6750, Lr: 0.000221\n",
"2020-02-04 20:34:57,532 Hooray! New best validation result [eval_metric]!\n",
"2020-02-04 20:34:57,532 Saving new checkpoint.\n",
"2020-02-04 20:34:59,217 Example #0\n",
"2020-02-04 20:34:59,217 \tSource: ( read philippians 2 : 5 - 8 . )\n",
"2020-02-04 20:34:59,217 \tReference: ( tanga filipe 2 : 5 - 8 . )\n",
"2020-02-04 20:34:59,217 \tHypothesis: ( tanga filipe 2 : 5 - 8 . )\n",
"2020-02-04 20:34:59,217 Example #1\n",
"2020-02-04 20:34:59,218 \tSource: today , more than ever before , there are so many things that can distract us .\n",
"2020-02-04 20:34:59,218 \tReference: lelu , kuene ima iavulu i tena ku tu landukisa , m’ukulu ndenge .\n",
"2020-02-04 20:34:59,218 \tHypothesis: lelu , kua kambe ngó , ande dia ku bhita o ima ioso , saí ima iavulu i tena ku tu landukisa .\n",
"2020-02-04 20:34:59,218 Example #2\n",
"2020-02-04 20:34:59,218 \tSource: the apostle paul warned about what can happen if we please ourselves first .\n",
"2020-02-04 20:34:59,218 \tReference: ( 1 nzuá 2 : 16 ) o poxolo phaulu ua tu dimuna ku ima i tena kubhita se tu suua ngó o ima i tua uabhela .\n",
"2020-02-04 20:34:59,218 \tHypothesis: o poxolo phaulu ua dimuna o ima i tena kubhita , se tu i sangulukisa .\n",
"2020-02-04 20:34:59,218 Example #3\n",
"2020-02-04 20:34:59,218 \tSource: what a privilege it is to live in these last days and to be part of jehovah’s incredible organization !\n",
"2020-02-04 20:34:59,218 \tReference: tua tokala ku lembalala izuua ioso kuila , ujitu ua dikota ku tokala mu kilunga kia jihova mu ixi , mu izuua isukidila - ku !\n",
"2020-02-04 20:34:59,218 \tHypothesis: ujitu ua dikota ku kala mu izuua íii isukidila - ku , ni ku bhanga mbandu ku kilunga kia jihova !\n",
"2020-02-04 20:34:59,219 Validation result (greedy) at epoch 14, step 10000: bleu: 26.10, loss: 34720.7383, ppl: 4.7438, duration: 23.9776s\n",
"2020-02-04 20:35:48,955 Epoch 14: total training loss 946.58\n",
"2020-02-04 20:35:48,955 EPOCH 15\n",
"2020-02-04 20:36:08,972 Epoch 15 Step: 10200 Batch Loss: 1.149951 Tokens per Sec: 6741, Lr: 0.000219\n",
"2020-02-04 20:37:18,232 Epoch 15 Step: 10400 Batch Loss: 1.112914 Tokens per Sec: 6765, Lr: 0.000217\n",
"2020-02-04 20:38:27,355 Epoch 15 Step: 10600 Batch Loss: 1.485635 Tokens per Sec: 6714, Lr: 0.000215\n",
"2020-02-04 20:39:36,381 Epoch 15 Step: 10800 Batch Loss: 1.262681 Tokens per Sec: 6753, Lr: 0.000213\n",
"2020-02-04 20:39:59,681 Epoch 15: total training loss 917.70\n",
"2020-02-04 20:39:59,681 EPOCH 16\n",
"2020-02-04 20:40:45,804 Epoch 16 Step: 11000 Batch Loss: 1.141444 Tokens per Sec: 6700, Lr: 0.000211\n",
"2020-02-04 20:41:54,926 Epoch 16 Step: 11200 Batch Loss: 1.221109 Tokens per Sec: 6773, Lr: 0.000209\n",
"2020-02-04 20:43:03,746 Epoch 16 Step: 11400 Batch Loss: 1.410407 Tokens per Sec: 6695, Lr: 0.000207\n",
"2020-02-04 20:44:10,887 Epoch 16: total training loss 897.40\n",
"2020-02-04 20:44:10,887 EPOCH 17\n",
"2020-02-04 20:44:12,739 Epoch 17 Step: 11600 Batch Loss: 1.301653 Tokens per Sec: 6571, Lr: 0.000205\n",
"2020-02-04 20:45:22,036 Epoch 17 Step: 11800 Batch Loss: 1.178325 Tokens per Sec: 6740, Lr: 0.000203\n",
"2020-02-04 20:46:31,137 Epoch 17 Step: 12000 Batch Loss: 1.176379 Tokens per Sec: 6731, Lr: 0.000202\n",
"2020-02-04 20:47:03,313 Hooray! New best validation result [eval_metric]!\n",
"2020-02-04 20:47:03,314 Saving new checkpoint.\n",
"2020-02-04 20:47:05,095 Example #0\n",
"2020-02-04 20:47:05,095 \tSource: ( read philippians 2 : 5 - 8 . )\n",
"2020-02-04 20:47:05,095 \tReference: ( tanga filipe 2 : 5 - 8 . )\n",
"2020-02-04 20:47:05,095 \tHypothesis: ( tanga filipe 2 : 5 - 8 . )\n",
"2020-02-04 20:47:05,095 Example #1\n",
"2020-02-04 20:47:05,095 \tSource: today , more than ever before , there are so many things that can distract us .\n",
"2020-02-04 20:47:05,095 \tReference: lelu , kuene ima iavulu i tena ku tu landukisa , m’ukulu ndenge .\n",
"2020-02-04 20:47:05,096 \tHypothesis: lelu , ande dia ku bhita o ima , saí ima iavulu i tena ku tu landukisa .\n",
"2020-02-04 20:47:05,096 Example #2\n",
"2020-02-04 20:47:05,096 \tSource: the apostle paul warned about what can happen if we please ourselves first .\n",
"2020-02-04 20:47:05,096 \tReference: ( 1 nzuá 2 : 16 ) o poxolo phaulu ua tu dimuna ku ima i tena kubhita se tu suua ngó o ima i tua uabhela .\n",
"2020-02-04 20:47:05,096 \tHypothesis: o poxolo phaulu ua dimuna o ima i tu tena o kubhanga , se tu i sangulukisa o muxima ua nzambi .\n",
"2020-02-04 20:47:05,096 Example #3\n",
"2020-02-04 20:47:05,096 \tSource: what a privilege it is to live in these last days and to be part of jehovah’s incredible organization !\n",
"2020-02-04 20:47:05,096 \tReference: tua tokala ku lembalala izuua ioso kuila , ujitu ua dikota ku tokala mu kilunga kia jihova mu ixi , mu izuua isukidila - ku !\n",
"2020-02-04 20:47:05,096 \tHypothesis: ujitu ua dikota ku kala mu izuua íii isukidila - ku , ni ku bhanga mbandu ku kilunga kia jihova !\n",
"2020-02-04 20:47:05,096 Validation result (greedy) at epoch 17, step 12000: bleu: 26.16, loss: 34417.0859, ppl: 4.6797, duration: 33.9585s\n",
"2020-02-04 20:48:14,113 Epoch 17 Step: 12200 Batch Loss: 1.303897 Tokens per Sec: 6802, Lr: 0.000200\n",
"2020-02-04 20:48:55,324 Epoch 17: total training loss 872.81\n",
"2020-02-04 20:48:55,324 EPOCH 18\n",
"2020-02-04 20:49:23,275 Epoch 18 Step: 12400 Batch Loss: 1.313688 Tokens per Sec: 6647, Lr: 0.000198\n",
"2020-02-04 20:50:32,802 Epoch 18 Step: 12600 Batch Loss: 1.247998 Tokens per Sec: 6754, Lr: 0.000197\n",
"2020-02-04 20:51:42,179 Epoch 18 Step: 12800 Batch Loss: 1.266422 Tokens per Sec: 6754, Lr: 0.000195\n",
"2020-02-04 20:52:51,013 Epoch 18 Step: 13000 Batch Loss: 1.123238 Tokens per Sec: 6736, Lr: 0.000194\n",
"2020-02-04 20:53:06,337 Epoch 18: total training loss 851.96\n",
"2020-02-04 20:53:06,337 EPOCH 19\n",
"2020-02-04 20:53:59,248 Epoch 19 Step: 13200 Batch Loss: 0.979365 Tokens per Sec: 6745, Lr: 0.000192\n",
"2020-02-04 20:55:08,508 Epoch 19 Step: 13400 Batch Loss: 1.147491 Tokens per Sec: 6792, Lr: 0.000191\n",
"2020-02-04 20:56:17,426 Epoch 19 Step: 13600 Batch Loss: 1.091969 Tokens per Sec: 6755, Lr: 0.000189\n",
"2020-02-04 20:57:16,512 Epoch 19: total training loss 832.52\n",
"2020-02-04 20:57:16,512 EPOCH 20\n",
"2020-02-04 20:57:26,043 Epoch 20 Step: 13800 Batch Loss: 1.193934 Tokens per Sec: 6556, Lr: 0.000188\n",
"2020-02-04 20:58:34,991 Epoch 20 Step: 14000 Batch Loss: 1.229089 Tokens per Sec: 6751, Lr: 0.000187\n",
"2020-02-04 20:59:00,784 Hooray! New best validation result [eval_metric]!\n",
"2020-02-04 20:59:00,785 Saving new checkpoint.\n",
"2020-02-04 20:59:02,527 Example #0\n",
"2020-02-04 20:59:02,527 \tSource: ( read philippians 2 : 5 - 8 . )\n",
"2020-02-04 20:59:02,527 \tReference: ( tanga filipe 2 : 5 - 8 . )\n",
"2020-02-04 20:59:02,527 \tHypothesis: ( tanga filipe 2 : 5 - 8 . )\n",
"2020-02-04 20:59:02,527 Example #1\n",
"2020-02-04 20:59:02,527 \tSource: today , more than ever before , there are so many things that can distract us .\n",
"2020-02-04 20:59:02,527 \tReference: lelu , kuene ima iavulu i tena ku tu landukisa , m’ukulu ndenge .\n",
"2020-02-04 20:59:02,528 \tHypothesis: lelu , ande dia ku bhita o ima , saí ima iavulu i tena ku tu landukisa .\n",
"2020-02-04 20:59:02,528 Example #2\n",
"2020-02-04 20:59:02,528 \tSource: the apostle paul warned about what can happen if we please ourselves first .\n",
"2020-02-04 20:59:02,528 \tReference: ( 1 nzuá 2 : 16 ) o poxolo phaulu ua tu dimuna ku ima i tena kubhita se tu suua ngó o ima i tua uabhela .\n",
"2020-02-04 20:59:02,528 \tHypothesis: o poxolo phaulu ua dimuna o ima i tena kubhita , se tu i sangulukisa o muxima uetu .\n",
"2020-02-04 20:59:02,528 Example #3\n",
"2020-02-04 20:59:02,528 \tSource: what a privilege it is to live in these last days and to be part of jehovah’s incredible organization !\n",
"2020-02-04 20:59:02,528 \tReference: tua tokala ku lembalala izuua ioso kuila , ujitu ua dikota ku tokala mu kilunga kia jihova mu ixi , mu izuua isukidila - ku !\n",
"2020-02-04 20:59:02,528 \tHypothesis: ujitu ua dikota ku kala mu izuua íii isukidila - ku , ni ku bhanga mbandu ku kilunga kia jihova !\n",
"2020-02-04 20:59:02,528 Validation result (greedy) at epoch 20, step 14000: bleu: 27.21, loss: 34284.7305, ppl: 4.6520, duration: 27.5373s\n",
"2020-02-04 21:00:11,822 Epoch 20 Step: 14200 Batch Loss: 1.060636 Tokens per Sec: 6718, Lr: 0.000185\n",
"2020-02-04 21:01:20,983 Epoch 20 Step: 14400 Batch Loss: 1.281659 Tokens per Sec: 6710, Lr: 0.000184\n",
"2020-02-04 21:01:55,348 Epoch 20: total training loss 815.14\n",
"2020-02-04 21:01:55,348 EPOCH 21\n",
"2020-02-04 21:02:30,501 Epoch 21 Step: 14600 Batch Loss: 1.254682 Tokens per Sec: 6780, Lr: 0.000183\n",
"2020-02-04 21:03:40,040 Epoch 21 Step: 14800 Batch Loss: 1.393568 Tokens per Sec: 6728, Lr: 0.000182\n",
"2020-02-04 21:04:48,713 Epoch 21 Step: 15000 Batch Loss: 0.893659 Tokens per Sec: 6724, Lr: 0.000180\n",
"2020-02-04 21:05:57,599 Epoch 21 Step: 15200 Batch Loss: 0.912125 Tokens per Sec: 6745, Lr: 0.000179\n",
"2020-02-04 21:06:06,220 Epoch 21: total training loss 794.84\n",
"2020-02-04 21:06:06,220 EPOCH 22\n",
"2020-02-04 21:07:06,241 Epoch 22 Step: 15400 Batch Loss: 1.034763 Tokens per Sec: 6755, Lr: 0.000178\n",
"2020-02-04 21:08:14,942 Epoch 22 Step: 15600 Batch Loss: 1.081931 Tokens per Sec: 6748, Lr: 0.000177\n",
"2020-02-04 21:09:24,367 Epoch 22 Step: 15800 Batch Loss: 1.300140 Tokens per Sec: 6756, Lr: 0.000176\n",
"2020-02-04 21:10:16,419 Epoch 22: total training loss 776.06\n",
"2020-02-04 21:10:16,419 EPOCH 23\n",
"2020-02-04 21:10:33,331 Epoch 23 Step: 16000 Batch Loss: 1.199994 Tokens per Sec: 6680, Lr: 0.000175\n",
"2020-02-04 21:11:06,115 Hooray! New best validation result [eval_metric]!\n",
"2020-02-04 21:11:06,115 Saving new checkpoint.\n",
"2020-02-04 21:11:07,697 Example #0\n",
"2020-02-04 21:11:07,698 \tSource: ( read philippians 2 : 5 - 8 . )\n",
"2020-02-04 21:11:07,698 \tReference: ( tanga filipe 2 : 5 - 8 . )\n",
"2020-02-04 21:11:07,698 \tHypothesis: ( tanga filipe 2 : 5 - 8 . )\n",
"2020-02-04 21:11:07,698 Example #1\n",
"2020-02-04 21:11:07,698 \tSource: today , more than ever before , there are so many things that can distract us .\n",
"2020-02-04 21:11:07,698 \tReference: lelu , kuene ima iavulu i tena ku tu landukisa , m’ukulu ndenge .\n",
"2020-02-04 21:11:07,698 \tHypothesis: lelu , kua kambe ngó bhofele , ande dia ima iavulu i tena ku tu landukisa .\n",
"2020-02-04 21:11:07,698 Example #2\n",
"2020-02-04 21:11:07,698 \tSource: the apostle paul warned about what can happen if we please ourselves first .\n",
"2020-02-04 21:11:07,698 \tReference: ( 1 nzuá 2 : 16 ) o poxolo phaulu ua tu dimuna ku ima i tena kubhita se tu suua ngó o ima i tua uabhela .\n",
"2020-02-04 21:11:07,698 \tHypothesis: o poxolo phaulu ua dimuna o ima i tena kubhita , se tu mesena ku ta o kituxi .\n",
"2020-02-04 21:11:07,698 Example #3\n",
"2020-02-04 21:11:07,699 \tSource: what a privilege it is to live in these last days and to be part of jehovah’s incredible organization !\n",
"2020-02-04 21:11:07,699 \tReference: tua tokala ku lembalala izuua ioso kuila , ujitu ua dikota ku tokala mu kilunga kia jihova mu ixi , mu izuua isukidila - ku !\n",
"2020-02-04 21:11:07,699 \tHypothesis: ujitu ua dikota ku kala mu izuua íii isukidila - ku , ni ku bhanga mbandu ku kilunga kia jihova !\n",
"2020-02-04 21:11:07,699 Validation result (greedy) at epoch 23, step 16000: bleu: 27.29, loss: 34352.4297, ppl: 4.6661, duration: 34.3671s\n",
"2020-02-04 21:12:16,709 Epoch 23 Step: 16200 Batch Loss: 0.907302 Tokens per Sec: 6697, Lr: 0.000174\n",
"2020-02-04 21:13:26,235 Epoch 23 Step: 16400 Batch Loss: 1.082953 Tokens per Sec: 6728, Lr: 0.000173\n",
"2020-02-04 21:14:35,507 Epoch 23 Step: 16600 Batch Loss: 0.971708 Tokens per Sec: 6791, Lr: 0.000172\n",
"2020-02-04 21:15:01,924 Epoch 23: total training loss 760.18\n",
"2020-02-04 21:15:01,924 EPOCH 24\n",
"2020-02-04 21:15:44,333 Epoch 24 Step: 16800 Batch Loss: 0.790211 Tokens per Sec: 6703, Lr: 0.000170\n",
"2020-02-04 21:16:53,763 Epoch 24 Step: 17000 Batch Loss: 1.323298 Tokens per Sec: 6747, Lr: 0.000169\n",
"2020-02-04 21:18:03,061 Epoch 24 Step: 17200 Batch Loss: 1.141842 Tokens per Sec: 6748, Lr: 0.000168\n",
"2020-02-04 21:19:12,428 Epoch 24 Step: 17400 Batch Loss: 1.137136 Tokens per Sec: 6745, Lr: 0.000168\n",
"2020-02-04 21:19:12,779 Epoch 24: total training loss 742.43\n",
"2020-02-04 21:19:12,779 EPOCH 25\n",
"2020-02-04 21:20:22,121 Epoch 25 Step: 17600 Batch Loss: 1.002455 Tokens per Sec: 6736, Lr: 0.000167\n",
"2020-02-04 21:21:31,568 Epoch 25 Step: 17800 Batch Loss: 1.016481 Tokens per Sec: 6740, Lr: 0.000166\n",
"2020-02-04 21:22:40,598 Epoch 25 Step: 18000 Batch Loss: 0.992400 Tokens per Sec: 6755, Lr: 0.000165\n",
"2020-02-04 21:23:06,908 Hooray! New best validation result [eval_metric]!\n",
"2020-02-04 21:23:06,909 Saving new checkpoint.\n",
"2020-02-04 21:23:08,660 Example #0\n",
"2020-02-04 21:23:08,660 \tSource: ( read philippians 2 : 5 - 8 . )\n",
"2020-02-04 21:23:08,660 \tReference: ( tanga filipe 2 : 5 - 8 . )\n",
"2020-02-04 21:23:08,660 \tHypothesis: ( tanga filipe 2 : 5 - 8 . )\n",
"2020-02-04 21:23:08,660 Example #1\n",
"2020-02-04 21:23:08,661 \tSource: today , more than ever before , there are so many things that can distract us .\n",
"2020-02-04 21:23:08,661 \tReference: lelu , kuene ima iavulu i tena ku tu landukisa , m’ukulu ndenge .\n",
"2020-02-04 21:23:08,661 \tHypothesis: lelu , ande dia ku bhita o ima , saí ima iavulu i tena ku tu landukisa .\n",
"2020-02-04 21:23:08,661 Example #2\n",
"2020-02-04 21:23:08,661 \tSource: the apostle paul warned about what can happen if we please ourselves first .\n",
"2020-02-04 21:23:08,661 \tReference: ( 1 nzuá 2 : 16 ) o poxolo phaulu ua tu dimuna ku ima i tena kubhita se tu suua ngó o ima i tua uabhela .\n",
"2020-02-04 21:23:08,661 \tHypothesis: o poxolo phaulu ua dimuna o ima i tu tena o kubhanga , se tu i sangulukisa o muxima ua nzambi .\n",
"2020-02-04 21:23:08,661 Example #3\n",
"2020-02-04 21:23:08,661 \tSource: what a privilege it is to live in these last days and to be part of jehovah’s incredible organization !\n",
"2020-02-04 21:23:08,661 \tReference: tua tokala ku lembalala izuua ioso kuila , ujitu ua dikota ku tokala mu kilunga kia jihova mu ixi , mu izuua isukidila - ku !\n",
"2020-02-04 21:23:08,661 \tHypothesis: ujitu ua dikota ku kala mu izuua íii isukidila - ku , ni ku bhanga mbandu ku kilunga kia jihova !\n",
"2020-02-04 21:23:08,661 Validation result (greedy) at epoch 25, step 18000: bleu: 27.56, loss: 34467.0391, ppl: 4.6902, duration: 28.0627s\n",
"2020-02-04 21:23:51,963 Epoch 25: total training loss 728.06\n",
"2020-02-04 21:23:51,963 EPOCH 26\n",
"2020-02-04 21:24:17,140 Epoch 26 Step: 18200 Batch Loss: 1.026593 Tokens per Sec: 6702, Lr: 0.000164\n",
"2020-02-04 21:25:26,300 Epoch 26 Step: 18400 Batch Loss: 0.830519 Tokens per Sec: 6723, Lr: 0.000163\n",
"2020-02-04 21:26:35,436 Epoch 26 Step: 18600 Batch Loss: 0.875107 Tokens per Sec: 6723, Lr: 0.000162\n",
"2020-02-04 21:27:45,162 Epoch 26 Step: 18800 Batch Loss: 1.146535 Tokens per Sec: 6752, Lr: 0.000161\n",
"2020-02-04 21:28:03,264 Epoch 26: total training loss 715.50\n",
"2020-02-04 21:28:03,265 EPOCH 27\n",
"2020-02-04 21:28:54,111 Epoch 27 Step: 19000 Batch Loss: 1.102405 Tokens per Sec: 6734, Lr: 0.000160\n",
"2020-02-04 21:30:03,059 Epoch 27 Step: 19200 Batch Loss: 0.899686 Tokens per Sec: 6778, Lr: 0.000159\n",
"2020-02-04 21:31:12,257 Epoch 27 Step: 19400 Batch Loss: 1.039293 Tokens per Sec: 6745, Lr: 0.000159\n",
"2020-02-04 21:32:13,601 Epoch 27: total training loss 699.15\n",
"2020-02-04 21:32:13,601 EPOCH 28\n",
"2020-02-04 21:32:21,225 Epoch 28 Step: 19600 Batch Loss: 0.930306 Tokens per Sec: 6531, Lr: 0.000158\n",
"2020-02-04 21:33:30,177 Epoch 28 Step: 19800 Batch Loss: 0.697419 Tokens per Sec: 6700, Lr: 0.000157\n",
"2020-02-04 21:34:39,432 Epoch 28 Step: 20000 Batch Loss: 1.109810 Tokens per Sec: 6770, Lr: 0.000156\n",
"2020-02-04 21:35:04,403 Hooray! New best validation result [eval_metric]!\n",
"2020-02-04 21:35:04,404 Saving new checkpoint.\n",
"2020-02-04 21:35:06,124 Example #0\n",
"2020-02-04 21:35:06,124 \tSource: ( read philippians 2 : 5 - 8 . )\n",
"2020-02-04 21:35:06,124 \tReference: ( tanga filipe 2 : 5 - 8 . )\n",
"2020-02-04 21:35:06,124 \tHypothesis: ( tanga filipe 2 : 5 - 8 . )\n",
"2020-02-04 21:35:06,124 Example #1\n",
"2020-02-04 21:35:06,125 \tSource: today , more than ever before , there are so many things that can distract us .\n",
"2020-02-04 21:35:06,125 \tReference: lelu , kuene ima iavulu i tena ku tu landukisa , m’ukulu ndenge .\n",
"2020-02-04 21:35:06,125 \tHypothesis: lelu , ande dia ku bhita o ima , saí ima i tena ku tu landukisa .\n",
"2020-02-04 21:35:06,125 Example #2\n",
"2020-02-04 21:35:06,125 \tSource: the apostle paul warned about what can happen if we please ourselves first .\n",
"2020-02-04 21:35:06,125 \tReference: ( 1 nzuá 2 : 16 ) o poxolo phaulu ua tu dimuna ku ima i tena kubhita se tu suua ngó o ima i tua uabhela .\n",
"2020-02-04 21:35:06,125 \tHypothesis: o poxolo phaulu ua dimuna o ima i tua tokala o kubhanga , se tu dióndo tua - nda dióndo .\n",
"2020-02-04 21:35:06,125 Example #3\n",
"2020-02-04 21:35:06,125 \tSource: what a privilege it is to live in these last days and to be part of jehovah’s incredible organization !\n",
"2020-02-04 21:35:06,125 \tReference: tua tokala ku lembalala izuua ioso kuila , ujitu ua dikota ku tokala mu kilunga kia jihova mu ixi , mu izuua isukidila - ku !\n",
"2020-02-04 21:35:06,125 \tHypothesis: ujitu ua dikota ku kala mu izuua íii isukidila - ku , ni ku bhanga mbandu ku kilunga kia jihova ku mundu uoso !\n",
"2020-02-04 21:35:06,125 Validation result (greedy) at epoch 28, step 20000: bleu: 27.83, loss: 34512.3594, ppl: 4.6997, duration: 26.6926s\n",
"2020-02-04 21:36:15,361 Epoch 28 Step: 20200 Batch Loss: 1.001297 Tokens per Sec: 6779, Lr: 0.000155\n",
"2020-02-04 21:36:51,103 Epoch 28: total training loss 685.74\n",
"2020-02-04 21:36:51,104 EPOCH 29\n",
"2020-02-04 21:37:24,494 Epoch 29 Step: 20400 Batch Loss: 0.780829 Tokens per Sec: 6656, Lr: 0.000155\n",
"2020-02-04 21:38:34,375 Epoch 29 Step: 20600 Batch Loss: 1.058090 Tokens per Sec: 6789, Lr: 0.000154\n",
"2020-02-04 21:39:43,651 Epoch 29 Step: 20800 Batch Loss: 1.022833 Tokens per Sec: 6713, Lr: 0.000153\n",
"2020-02-04 21:40:52,962 Epoch 29 Step: 21000 Batch Loss: 1.021863 Tokens per Sec: 6729, Lr: 0.000152\n",
"2020-02-04 21:41:02,519 Epoch 29: total training loss 672.60\n",
"2020-02-04 21:41:02,520 EPOCH 30\n",
"2020-02-04 21:42:02,234 Epoch 30 Step: 21200 Batch Loss: 1.052732 Tokens per Sec: 6722, Lr: 0.000152\n",
"2020-02-04 21:43:11,251 Epoch 30 Step: 21400 Batch Loss: 0.706357 Tokens per Sec: 6738, Lr: 0.000151\n",
"2020-02-04 21:44:20,417 Epoch 30 Step: 21600 Batch Loss: 1.044521 Tokens per Sec: 6757, Lr: 0.000150\n",
"2020-02-04 21:45:12,997 Epoch 30: total training loss 660.55\n",
"2020-02-04 21:45:12,998 EPOCH 31\n",
"2020-02-04 21:45:29,078 Epoch 31 Step: 21800 Batch Loss: 0.909594 Tokens per Sec: 6664, Lr: 0.000150\n",
"2020-02-04 21:46:38,634 Epoch 31 Step: 22000 Batch Loss: 1.052121 Tokens per Sec: 6702, Lr: 0.000149\n",
"2020-02-04 21:47:04,968 Example #0\n",
"2020-02-04 21:47:04,968 \tSource: ( read philippians 2 : 5 - 8 . )\n",
"2020-02-04 21:47:04,968 \tReference: ( tanga filipe 2 : 5 - 8 . )\n",
"2020-02-04 21:47:04,968 \tHypothesis: ( tanga filipe 2 : 5 - 8 . )\n",
"2020-02-04 21:47:04,968 Example #1\n",
"2020-02-04 21:47:04,968 \tSource: today , more than ever before , there are so many things that can distract us .\n",
"2020-02-04 21:47:04,968 \tReference: lelu , kuene ima iavulu i tena ku tu landukisa , m’ukulu ndenge .\n",
"2020-02-04 21:47:04,968 \tHypothesis: lelu , ande dia kubhita o ima ioso , sai ima iavulu i tena ku tu landukisa .\n",
"2020-02-04 21:47:04,969 Example #2\n",
"2020-02-04 21:47:04,969 \tSource: the apostle paul warned about what can happen if we please ourselves first .\n",
"2020-02-04 21:47:04,969 \tReference: ( 1 nzuá 2 : 16 ) o poxolo phaulu ua tu dimuna ku ima i tena kubhita se tu suua ngó o ima i tua uabhela .\n",
"2020-02-04 21:47:04,969 \tHypothesis: o poxolo phaulu ua dimuna o ima i tena ku bhita , se tu bhanga o ima i tua mesena .\n",
"2020-02-04 21:47:04,969 Example #3\n",
"2020-02-04 21:47:04,969 \tSource: what a privilege it is to live in these last days and to be part of jehovah’s incredible organization !\n",
"2020-02-04 21:47:04,969 \tReference: tua tokala ku lembalala izuua ioso kuila , ujitu ua dikota ku tokala mu kilunga kia jihova mu ixi , mu izuua isukidila - ku !\n",
"2020-02-04 21:47:04,969 \tHypothesis: ujitu ua dikota ku kala mu izuua íii isukidila - ku , ni ku bhanga mbandu ku kilunga kia jihova !\n",
"2020-02-04 21:47:04,969 Validation result (greedy) at epoch 31, step 22000: bleu: 27.66, loss: 34950.4023, ppl: 4.7929, duration: 26.3353s\n",
"2020-02-04 21:48:13,895 Epoch 31 Step: 22200 Batch Loss: 0.803242 Tokens per Sec: 6752, Lr: 0.000148\n",
"2020-02-04 21:49:23,200 Epoch 31 Step: 22400 Batch Loss: 1.006292 Tokens per Sec: 6735, Lr: 0.000148\n",
"2020-02-04 21:49:50,363 Epoch 31: total training loss 649.05\n",
"2020-02-04 21:49:50,363 EPOCH 32\n",
"2020-02-04 21:50:32,894 Epoch 32 Step: 22600 Batch Loss: 1.001542 Tokens per Sec: 6767, Lr: 0.000147\n",
"2020-02-04 21:51:41,897 Epoch 32 Step: 22800 Batch Loss: 1.021521 Tokens per Sec: 6709, Lr: 0.000146\n",
"2020-02-04 21:52:51,202 Epoch 32 Step: 23000 Batch Loss: 1.034444 Tokens per Sec: 6747, Lr: 0.000146\n",
"2020-02-04 21:54:00,508 Epoch 32 Step: 23200 Batch Loss: 0.662240 Tokens per Sec: 6760, Lr: 0.000145\n",
"2020-02-04 21:54:01,151 Epoch 32: total training loss 636.39\n",
"2020-02-04 21:54:01,151 EPOCH 33\n",
"2020-02-04 21:55:09,802 Epoch 33 Step: 23400 Batch Loss: 0.973105 Tokens per Sec: 6725, Lr: 0.000144\n",
"2020-02-04 21:56:19,202 Epoch 33 Step: 23600 Batch Loss: 0.733882 Tokens per Sec: 6752, Lr: 0.000144\n",
"2020-02-04 21:57:27,851 Epoch 33 Step: 23800 Batch Loss: 0.902763 Tokens per Sec: 6733, Lr: 0.000143\n",
"2020-02-04 21:58:11,830 Epoch 33: total training loss 626.07\n",
"2020-02-04 21:58:11,830 EPOCH 34\n",
"2020-02-04 21:58:37,167 Epoch 34 Step: 24000 Batch Loss: 0.886888 Tokens per Sec: 6783, Lr: 0.000143\n",
"2020-02-04 21:59:03,626 Example #0\n",
"2020-02-04 21:59:03,626 \tSource: ( read philippians 2 : 5 - 8 . )\n",
"2020-02-04 21:59:03,626 \tReference: ( tanga filipe 2 : 5 - 8 . )\n",
"2020-02-04 21:59:03,626 \tHypothesis: ( tanga filipe 2 : 5 - 8 . )\n",
"2020-02-04 21:59:03,627 Example #1\n",
"2020-02-04 21:59:03,627 \tSource: today , more than ever before , there are so many things that can distract us .\n",
"2020-02-04 21:59:03,627 \tReference: lelu , kuene ima iavulu i tena ku tu landukisa , m’ukulu ndenge .\n",
"2020-02-04 21:59:03,627 \tHypothesis: lelu , ande dia ima iavulu ku tu landukisa .\n",
"2020-02-04 21:59:03,627 Example #2\n",
"2020-02-04 21:59:03,627 \tSource: the apostle paul warned about what can happen if we please ourselves first .\n",
"2020-02-04 21:59:03,627 \tReference: ( 1 nzuá 2 : 16 ) o poxolo phaulu ua tu dimuna ku ima i tena kubhita se tu suua ngó o ima i tua uabhela .\n",
"2020-02-04 21:59:03,627 \tHypothesis: o poxolo phaulu ua dimuna o ima i tu tena o kubhanga , se tu bhanga o ima i tua mesena ia tu sangulukisa .\n",
"2020-02-04 21:59:03,627 Example #3\n",
"2020-02-04 21:59:03,627 \tSource: what a privilege it is to live in these last days and to be part of jehovah’s incredible organization !\n",
"2020-02-04 21:59:03,627 \tReference: tua tokala ku lembalala izuua ioso kuila , ujitu ua dikota ku tokala mu kilunga kia jihova mu ixi , mu izuua isukidila - ku !\n",
"2020-02-04 21:59:03,628 \tHypothesis: ujitu ua dikota ku kala mu izuua íii isukidila - ku , ni ku bhanga mbandu ku kilunga kia jihova mu ngongo ioso !\n",
"2020-02-04 21:59:03,628 Validation result (greedy) at epoch 34, step 24000: bleu: 27.81, loss: 35239.2383, ppl: 4.8554, duration: 26.4609s\n",
"2020-02-04 22:00:12,651 Epoch 34 Step: 24200 Batch Loss: 0.735904 Tokens per Sec: 6769, Lr: 0.000142\n",
"2020-02-04 22:01:21,751 Epoch 34 Step: 24400 Batch Loss: 0.764096 Tokens per Sec: 6725, Lr: 0.000141\n",
"2020-02-04 22:02:31,084 Epoch 34 Step: 24600 Batch Loss: 0.675966 Tokens per Sec: 6724, Lr: 0.000141\n",
"2020-02-04 22:02:48,997 Epoch 34: total training loss 615.29\n",
"2020-02-04 22:02:48,997 EPOCH 35\n",
"2020-02-04 22:03:40,033 Epoch 35 Step: 24800 Batch Loss: 0.966231 Tokens per Sec: 6778, Lr: 0.000140\n",
"2020-02-04 22:04:49,458 Epoch 35 Step: 25000 Batch Loss: 1.004890 Tokens per Sec: 6685, Lr: 0.000140\n",
"2020-02-04 22:05:58,423 Epoch 35 Step: 25200 Batch Loss: 0.799023 Tokens per Sec: 6731, Lr: 0.000139\n",
"2020-02-04 22:06:59,902 Epoch 35: total training loss 604.89\n",
"2020-02-04 22:06:59,902 EPOCH 36\n",
"2020-02-04 22:07:07,737 Epoch 36 Step: 25400 Batch Loss: 0.851759 Tokens per Sec: 6783, Lr: 0.000139\n",
"2020-02-04 22:08:16,531 Epoch 36 Step: 25600 Batch Loss: 0.867299 Tokens per Sec: 6737, Lr: 0.000138\n",
"2020-02-04 22:09:25,729 Epoch 36 Step: 25800 Batch Loss: 0.928555 Tokens per Sec: 6769, Lr: 0.000138\n",
"2020-02-04 22:10:34,258 Epoch 36 Step: 26000 Batch Loss: 0.984406 Tokens per Sec: 6720, Lr: 0.000137\n",
"2020-02-04 22:11:00,673 Hooray! New best validation result [eval_metric]!\n",
"2020-02-04 22:11:00,673 Saving new checkpoint.\n",
"2020-02-04 22:11:02,345 Example #0\n",
"2020-02-04 22:11:02,345 \tSource: ( read philippians 2 : 5 - 8 . )\n",
"2020-02-04 22:11:02,345 \tReference: ( tanga filipe 2 : 5 - 8 . )\n",
"2020-02-04 22:11:02,346 \tHypothesis: ( tanga filipe 2 : 5 - 8 . )\n",
"2020-02-04 22:11:02,346 Example #1\n",
"2020-02-04 22:11:02,346 \tSource: today , more than ever before , there are so many things that can distract us .\n",
"2020-02-04 22:11:02,346 \tReference: lelu , kuene ima iavulu i tena ku tu landukisa , m’ukulu ndenge .\n",
"2020-02-04 22:11:02,346 \tHypothesis: lelu , m’ukulu , kuene ima iavulu i tena ku tu landukisa .\n",
"2020-02-04 22:11:02,346 Example #2\n",
"2020-02-04 22:11:02,346 \tSource: the apostle paul warned about what can happen if we please ourselves first .\n",
"2020-02-04 22:11:02,346 \tReference: ( 1 nzuá 2 : 16 ) o poxolo phaulu ua tu dimuna ku ima i tena kubhita se tu suua ngó o ima i tua uabhela .\n",
"2020-02-04 22:11:02,347 \tHypothesis: o poxolo phaulu ua dimuna o ima i tu tena kubhanga , se tu dióndo dianga kusota o kitambuijilu kia poxolo .\n",
"2020-02-04 22:11:02,347 Example #3\n",
"2020-02-04 22:11:02,347 \tSource: what a privilege it is to live in these last days and to be part of jehovah’s incredible organization !\n",
"2020-02-04 22:11:02,347 \tReference: tua tokala ku lembalala izuua ioso kuila , ujitu ua dikota ku tokala mu kilunga kia jihova mu ixi , mu izuua isukidila - ku !\n",
"2020-02-04 22:11:02,347 \tHypothesis: ujitu ua dikota ku kala mu izuua íii isukidila - ku , ni ku bhanga mbandu ku kilunga kia jihova mu kilunga kiê !\n",
"2020-02-04 22:11:02,347 Validation result (greedy) at epoch 36, step 26000: bleu: 28.57, loss: 35323.6875, ppl: 4.8738, duration: 28.0886s\n",
"2020-02-04 22:11:38,789 Epoch 36: total training loss 595.59\n",
"2020-02-04 22:11:38,789 EPOCH 37\n",
"2020-02-04 22:12:11,812 Epoch 37 Step: 26200 Batch Loss: 0.837748 Tokens per Sec: 6688, Lr: 0.000137\n",
"2020-02-04 22:13:20,839 Epoch 37 Step: 26400 Batch Loss: 0.885409 Tokens per Sec: 6753, Lr: 0.000136\n",
"2020-02-04 22:14:29,896 Epoch 37 Step: 26600 Batch Loss: 0.945491 Tokens per Sec: 6753, Lr: 0.000135\n",
"2020-02-04 22:15:38,565 Epoch 37 Step: 26800 Batch Loss: 0.869143 Tokens per Sec: 6750, Lr: 0.000135\n",
"2020-02-04 22:15:49,475 Epoch 37: total training loss 585.76\n",
"2020-02-04 22:15:49,475 EPOCH 38\n",
"2020-02-04 22:16:48,111 Epoch 38 Step: 27000 Batch Loss: 0.751874 Tokens per Sec: 6739, Lr: 0.000134\n",
"2020-02-04 22:17:57,532 Epoch 38 Step: 27200 Batch Loss: 0.771263 Tokens per Sec: 6784, Lr: 0.000134\n",
"2020-02-04 22:19:06,625 Epoch 38 Step: 27400 Batch Loss: 0.903140 Tokens per Sec: 6732, Lr: 0.000133\n",
"2020-02-04 22:19:59,952 Epoch 38: total training loss 574.80\n",
"2020-02-04 22:19:59,952 EPOCH 39\n",
"2020-02-04 22:20:15,691 Epoch 39 Step: 27600 Batch Loss: 0.824561 Tokens per Sec: 6609, Lr: 0.000133\n",
"2020-02-04 22:21:24,953 Epoch 39 Step: 27800 Batch Loss: 0.907379 Tokens per Sec: 6778, Lr: 0.000133\n",
"2020-02-04 22:22:33,948 Epoch 39 Step: 28000 Batch Loss: 0.561887 Tokens per Sec: 6718, Lr: 0.000132\n",
"2020-02-04 22:22:59,746 Example #0\n",
"2020-02-04 22:22:59,747 \tSource: ( read philippians 2 : 5 - 8 . )\n",
"2020-02-04 22:22:59,747 \tReference: ( tanga filipe 2 : 5 - 8 . )\n",
"2020-02-04 22:22:59,747 \tHypothesis: ( tanga filipe 2 : 5 - 8 . )\n",
"2020-02-04 22:22:59,747 Example #1\n",
"2020-02-04 22:22:59,747 \tSource: today , more than ever before , there are so many things that can distract us .\n",
"2020-02-04 22:22:59,747 \tReference: lelu , kuene ima iavulu i tena ku tu landukisa , m’ukulu ndenge .\n",
"2020-02-04 22:22:59,747 \tHypothesis: lelu , ande dia ima iavulu ku bhita , saí ima iavulu i tena ku tu landukisa .\n",
"2020-02-04 22:22:59,747 Example #2\n",
"2020-02-04 22:22:59,747 \tSource: the apostle paul warned about what can happen if we please ourselves first .\n",
"2020-02-04 22:22:59,747 \tReference: ( 1 nzuá 2 : 16 ) o poxolo phaulu ua tu dimuna ku ima i tena kubhita se tu suua ngó o ima i tua uabhela .\n",
"2020-02-04 22:22:59,747 \tHypothesis: o poxolo phaulu ua dimuna o ima i tena kubhita , se tu bhanga o ima i tua mesena .\n",
"2020-02-04 22:22:59,747 Example #3\n",
"2020-02-04 22:22:59,748 \tSource: what a privilege it is to live in these last days and to be part of jehovah’s incredible organization !\n",
"2020-02-04 22:22:59,748 \tReference: tua tokala ku lembalala izuua ioso kuila , ujitu ua dikota ku tokala mu kilunga kia jihova mu ixi , mu izuua isukidila - ku !\n",
"2020-02-04 22:22:59,748 \tHypothesis: ujitu ua dikota ku kala mu izuua íii isukidila - ku , ni ku bhanga mbandu ku kilunga kia jihova !\n",
"2020-02-04 22:22:59,748 Validation result (greedy) at epoch 39, step 28000: bleu: 27.94, loss: 35734.3711, ppl: 4.9644, duration: 25.7991s\n",
"2020-02-04 22:24:09,053 Epoch 39 Step: 28200 Batch Loss: 0.667817 Tokens per Sec: 6729, Lr: 0.000132\n",
"2020-02-04 22:24:36,539 Epoch 39: total training loss 566.02\n",
"2020-02-04 22:24:36,539 EPOCH 40\n",
"2020-02-04 22:25:18,384 Epoch 40 Step: 28400 Batch Loss: 0.907208 Tokens per Sec: 6721, Lr: 0.000131\n",
"2020-02-04 22:26:27,322 Epoch 40 Step: 28600 Batch Loss: 0.836263 Tokens per Sec: 6749, Lr: 0.000131\n",
"2020-02-04 22:27:36,618 Epoch 40 Step: 28800 Batch Loss: 0.577048 Tokens per Sec: 6768, Lr: 0.000130\n",
"2020-02-04 22:28:45,588 Epoch 40 Step: 29000 Batch Loss: 0.725040 Tokens per Sec: 6770, Lr: 0.000130\n",
"2020-02-04 22:28:46,906 Epoch 40: total training loss 557.25\n",
"2020-02-04 22:28:46,907 Training ended after 40 epochs.\n",
"2020-02-04 22:28:46,907 Best validation result (greedy) at step 26000: 28.57 eval_metric.\n",
"2020-02-04 22:29:27,124 dev bleu: 28.81 [Beam search decoding with beam size = 5 and alpha = 1.0]\n",
"2020-02-04 22:29:27,125 Translations saved to: models/enkmb_transformer/00026000.hyps.dev\n",
"2020-02-04 22:31:02,627 test bleu: 32.76 [Beam search decoding with beam size = 5 and alpha = 1.0]\n",
"2020-02-04 22:31:02,629 Translations saved to: models/enkmb_transformer/00026000.hyps.test\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "EgjqnSBFn2eh",
"colab_type": "code",
"outputId": "2d516f75-cac4-43ff-fbc8-27b40f508ea4",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 260
}
},
"source": [
"! cat joeynmt/models/enkmb_transformer/validations.txt"
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"Steps: 2000\tLoss: 47097.83984\tPPL: 8.26328\tbleu: 14.85684\tLR: 0.00049411\t*\n",
"Steps: 4000\tLoss: 39856.20312\tPPL: 5.97219\tbleu: 20.91001\tLR: 0.00034939\t*\n",
"Steps: 6000\tLoss: 37121.82812\tPPL: 5.28307\tbleu: 23.80892\tLR: 0.00028527\t*\n",
"Steps: 8000\tLoss: 35674.49609\tPPL: 4.95110\tbleu: 25.00066\tLR: 0.00024705\t*\n",
"Steps: 10000\tLoss: 34720.73828\tPPL: 4.74383\tbleu: 26.10309\tLR: 0.00022097\t*\n",
"Steps: 12000\tLoss: 34417.08594\tPPL: 4.67967\tbleu: 26.15923\tLR: 0.00020172\t*\n",
"Steps: 14000\tLoss: 34284.73047\tPPL: 4.65198\tbleu: 27.20639\tLR: 0.00018675\t*\n",
"Steps: 16000\tLoss: 34352.42969\tPPL: 4.66613\tbleu: 27.29388\tLR: 0.00017469\t*\n",
"Steps: 18000\tLoss: 34467.03906\tPPL: 4.69017\tbleu: 27.56135\tLR: 0.00016470\t*\n",
"Steps: 20000\tLoss: 34512.35938\tPPL: 4.69971\tbleu: 27.82828\tLR: 0.00015625\t*\n",
"Steps: 22000\tLoss: 34950.40234\tPPL: 4.79293\tbleu: 27.65960\tLR: 0.00014898\t\n",
"Steps: 24000\tLoss: 35239.23828\tPPL: 4.85541\tbleu: 27.80829\tLR: 0.00014264\t\n",
"Steps: 26000\tLoss: 35323.68750\tPPL: 4.87383\tbleu: 28.57189\tLR: 0.00013704\t*\n",
"Steps: 28000\tLoss: 35734.37109\tPPL: 4.96441\tbleu: 27.94465\tLR: 0.00013206\t\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "9NOP9uXVsMDi",
"colab_type": "code",
"outputId": "f649ef87-c285-4c4b-b7cb-f44c2251781d",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 69
}
},
"source": [
"! cd joeynmt; python3 -m joeynmt test models/enkmb_transformer/config.yaml "
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"2020-02-04 22:38:57,549 Hello! This is Joey-NMT.\n",
"2020-02-04 22:39:38,351 dev bleu: 28.81 [Beam search decoding with beam size = 5 and alpha = 1.0]\n",
"2020-02-04 22:41:09,183 test bleu: 32.76 [Beam search decoding with beam size = 5 and alpha = 1.0]\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "NItstdy5XK8i",
"colab_type": "code",
"outputId": "fac74fb9-9561-44a6-8eed-8166ad3d7f42",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 124
}
},
"source": [
"from google.colab import drive\n",
"drive.mount('/content/drive')"
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client_id=947318989803-6bn6qk8qdgf4n4g3pfee6491hc0brc4i.apps.googleusercontent.com&redirect_uri=urn%3aietf%3awg%3aoauth%3a2.0%3aoob&response_type=code&scope=email%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdocs.test%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fpeopleapi.readonly\n",
"\n",
"Enter your authorization code:\n",
"··········\n",
"Mounted at /content/drive\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "0LXxVAOVp9Y8",
"colab_type": "code",
"colab": {}
},
"source": [
"!mkdir -p /content/drive/My\\ Drive/masakhane/kmb"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "8C1ZqQU3XqWM",
"colab_type": "code",
"outputId": "590d6509-f9da-406f-ee9b-66c8ac3a1105",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 54
}
},
"source": [
"!cp -r joeynmt/models/enkmb_transformer /content/drive/My\\ Drive/masakhane/kmb/"
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"cp: cannot create symbolic link '/content/drive/My Drive/masakhane/kmb/enkmb_transformer/best.ckpt': Operation not supported\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "nS2NiVSMX5bB",
"colab_type": "code",
"colab": {}
},
"source": [
""
],
"execution_count": 0,
"outputs": []
}
]
} |