File size: 13,337 Bytes
db4bc69
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7eb20d23d750>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eb20d23d7e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eb20d23d870>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eb20d23d900>", "_build": "<function ActorCriticPolicy._build at 0x7eb20d23d990>", "forward": "<function ActorCriticPolicy.forward at 0x7eb20d23da20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7eb20d23dab0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eb20d23db40>", "_predict": "<function ActorCriticPolicy._predict at 0x7eb20d23dbd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eb20d23dc60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eb20d23dcf0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7eb20d23dd80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7eb20d1e9480>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1723478644405603363, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAEaEZj7NzJc+Nyo0vm9va77++ak8SqPjvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVCgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHLV5BPbfxeMAWyUTR0BjAF0lEdAm8iNtEXtSnV9lChoBkdAcdjXuVopQWgHTQ4BaAhHQJvKDCxeLNx1fZQoaAZHQHJkAi3XqaBoB0v/aAhHQJvLc3l0YCR1fZQoaAZHQHBjNZJTVDtoB00mAWgIR0CbzRm16Vt5dX2UKGgGR0ByLFRNyo4uaAdL2GgIR0Cbz3wOe8PGdX2UKGgGR0BxdK+BYmsvaAdNNQFoCEdAm9E8cp9ZzXV9lChoBkdAcCMXfZVXFWgHS/doCEdAm9KaEal1sHV9lChoBkdAc2XqJuVHF2gHS/poCEdAm9P7hJiAlXV9lChoBkdAbwl3KSxJNGgHS/5oCEdAm9aP8dgfEHV9lChoBkdAcJY/Khcqv2gHS99oCEdAm9fN4iX6ZnV9lChoBkdAcfFpnYg7o2gHTQQBaAhHQJvZRVKf4AV1fZQoaAZHQHKfaUqx1PpoB00AAWgIR0Cb2q4qPOpsdX2UKGgGR0ByH76be/HpaAdNWAFoCEdAm93KZx7zCnV9lChoBkdAcLa4KhL5AWgHTRkBaAhHQJvfXSc9W6t1fZQoaAZHQG97B6a9botoB00UAWgIR0Cb4OsfaHsUdX2UKGgGR0Bv01PHktEoaAdL+mgIR0Cb4k3PRiPRdX2UKGgGR0BxE+RzRx95aAdNAgFoCEdAm+UGbG3nZHV9lChoBkdAcYUyvcJtzmgHTRMBaAhHQJvmi9DhLoR1fZQoaAZHQHF0S3XqZ+hoB00PAWgIR0Cb6AfzSThYdX2UKGgGR0BzP01UEPlNaAdNBQFoCEdAm+qtthuwYHV9lChoBkdAcLM2OyVv/GgHS9toCEdAm+vjx5LRKHV9lChoBkdAcuAQPZqVQmgHS/NoCEdAm+1GsV+I/XV9lChoBkdAcoPM9r4332gHTRIBaAhHQJvvFvR7Z391fZQoaAZHQHLHQSBbwBpoB00wAWgIR0Cb8r+49X9zdX2UKGgGR0BwRe/mDDjzaAdNIQFoCEdAm/UMKohpxnV9lChoBkdAcEDoKlYU4GgHS/loCEdAm/b/A9FF2HV9lChoBkdATH9x2jfvW2gHS5doCEdAm/ggJLM9sHV9lChoBkdAboVNVR1ox2gHTRUBaAhHQJv6ElXzUZx1fZQoaAZHQG9v7Wd3B55oB0v6aAhHQJv8p0FKTSt1fZQoaAZHQHBK0gjhUBJoB0vpaAhHQJv9/gdfb9J1fZQoaAZHQHGTVxjriVBoB0v1aAhHQJv/X0xubZx1fZQoaAZHQHC6XvUjLSxoB00IAWgIR0CcAOcRlHz6dX2UKGgGR0Bw/rthNM4+aAdL9GgIR0CcA4L0jC53dX2UKGgGR0BxjkypJf6XaAdNHAFoCEdAnAUd8ma6SXV9lChoBkdAclVHPeHi32gHS/JoCEdAnAZ82BJ7LXV9lChoBkdAcLaWbwz+FWgHTQIBaAhHQJwH5kGzKLd1fZQoaAZHQHBYd4mkWRBoB00AAWgIR0CcCopuMuOCdX2UKGgGR0BvnBS9/SYxaAdL8mgIR0CcC+JqZc9odX2UKGgGR0ByFA9yLhrFaAdL3mgIR0CcDR1gH/tIdX2UKGgGR0BySLNiYsunaAdL/mgIR0CcDokZJkGzdX2UKGgGR0Bvj0k+otL+aAdL5WgIR0CcEQLeQ+2WdX2UKGgGR0ByIiDe0ojOaAdL+mgIR0CcEmxz7uUmdX2UKGgGR0Bwmccjqv/zaAdNAgFoCEdAnBPcCLdepnV9lChoBkdAcb8LncL0BmgHS9doCEdAnBULZBcAznV9lChoBkdAcp32Rq46O2gHTRkBaAhHQJwXzsmfGuN1fZQoaAZHQHHiaSowVTJoB00TAWgIR0CcGVSaEzwddX2UKGgGR0BxUMxTKkmAaAdL7mgIR0CcGq3kxREXdX2UKGgGR0BuReGh24d7aAdL3WgIR0CcG+MVk+X7dX2UKGgGR0Bw8GGRFI/aaAdL+mgIR0CcHm+V1Oj7dX2UKGgGR0BxAdDZ13dLaAdL2GgIR0CcH7cmBvrGdX2UKGgGR0Bqdshs67ulaAdN0AFoCEdAnCLXSro4dnV9lChoBkdAcMqQCjk+5mgHTQQBaAhHQJwktAhStNl1fZQoaAZHQG15seGO+7FoB01zAWgIR0CcKSZQYUFjdX2UKGgGR0BxgJgtvn8saAdNBQFoCEdAnCskPQOWjXV9lChoBkdAcavOB19v0mgHTQMBaAhHQJwsjqY7aIx1fZQoaAZHQCUJZntfG+9oB0u0aAhHQJwuyClJpWV1fZQoaAZHQG+VbMHKOktoB00FAWgIR0CcMEQkX1rZdX2UKGgGR0BxTv4h2W6caAdL3mgIR0CcMX6iCaqkdX2UKGgGR0ByPN5nlGPQaAdNEAFoCEdAnDL983Mpw3V9lChoBkdAcdvLmZE2HmgHS+xoCEdAnDV8C5mRNnV9lChoBkdAbmxY+Sr5qWgHS+hoCEdAnDbRKYiPhnV9lChoBkdAbhNxqfvnbWgHS+5oCEdAnDg7b5/LDHV9lChoBkdAc0K/LTx5LWgHS/BoCEdAnDmZ/G2kSHV9lChoBkdAcJoHI6r/82gHS+FoCEdAnDrY+jdpI3V9lChoBkdAaHM9HMEA52gHTeoCaAhHQJxAS1LJ0XB1fZQoaAZHQHB2DMV1wHZoB0v+aAhHQJxBsnw5NoJ1fZQoaAZHQG0cArhBJI1oB0v2aAhHQJxER4eLehx1fZQoaAZHQG7sAs9SuQpoB0vbaAhHQJxFfNzKcNJ1fZQoaAZHQG5IJBPbfxdoB0v2aAhHQJxG0U0vXbx1fZQoaAZHQG/tTjebd8BoB0vtaAhHQJxIH70nPVx1fZQoaAZHQHFPf73wkPdoB0vmaAhHQJxKlb1RLsd1fZQoaAZHQHHm0Bfa6BloB0v6aAhHQJxMFkUbkwN1fZQoaAZHQHFYKQ7tAs1oB0vsaAhHQJxNY8gZCOZ1fZQoaAZHQHDaZcgQpWpoB0vLaAhHQJxOf7m+0w91fZQoaAZHQG+vt+CsfaJoB00EAWgIR0CcT+7SiM5wdX2UKGgGR0BwBjlhgE2YaAdNCgFoCEdAnFKSdJ8OTnV9lChoBkdAc1gFPi1iOWgHTT4BaAhHQJxU+2/i5ut1fZQoaAZHQGc6yteUpuxoB03KAWgIR0CcWE28IzFddX2UKGgGR0BQuxClabF1aAdLvWgIR0CcW4m4RVZLdX2UKGgGR0Bww7ovBacJaAdNAgFoCEdAnFz6kIomX3V9lChoBkdAcU5wu/UONGgHS+JoCEdAnF49XtBv73V9lChoBkdAcKvkHD766GgHTQkBaAhHQJxfsMPSUkh1fZQoaAZHQHGswUg0TDhoB0veaAhHQJxiHj81n/V1fZQoaAZHQFUSqM3qAz5oB0vEaAhHQJxjNqHoHLR1fZQoaAZHQHOGdmg8KXxoB0vlaAhHQJxkgrEtNBZ1fZQoaAZHQG7UCDM/yG1oB00XAWgIR0CcZgkMCtA+dX2UKGgGR0BybbU9ZA6daAdL92gIR0CcaJMMqjJudX2UKGgGR0Bu4rqKP4mDaAdL92gIR0CcafQCjk+5dX2UKGgGR0Bynh53Tuv2aAdL8WgIR0Cca0pKjBVNdX2UKGgGR0BxxZoakyk9aAdL92gIR0CcbKenhsIndX2UKGgGR0ByeL3h4t6HaAdL+WgIR0CcbzhnJ1aGdX2UKGgGR0BzbkcDKYAsaAdNFAFoCEdAnHC3Y150KnV9lChoBkdAVOmXeFcps2gHS5FoCEdAnHGNz4k/r3V9lChoBkdAbtz+5OJtSGgHTREBaAhHQJxzDw+dK/V1fZQoaAZHQFGsRjjJdSloB0ucaAhHQJxz6NYKYzB1fZQoaAZHQHJqVVcUuctoB0vNaAhHQJx2PqZ+hGp1fZQoaAZHQHNz3XAdn01oB0v4aAhHQJx3r0voNd91fZQoaAZHQHIBv1UVBUtoB0vsaAhHQJx5GW5Yoy91fZQoaAZHQHMl4uCf6GhoB00HAWgIR0Cceo2fChvjdX2UKGgGR0BMJ6DGtITXaAdLjGgIR0Cce1OoYNy6dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVpQEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooRwK0YyJ9GimEZ2YRDAjmClwCMA2luY5SKEWkkbwthfc088Rrq/FBNp5wAdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUigWm41zsAHVidWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}