christinacdl's picture
Update README.md
1a02f7a verified
metadata
license: mit
base_model: xlm-roberta-large
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: XLM_RoBERTa-Multilingual-Clickbait-Detection
    results: []
datasets:
  - christinacdl/clickbait_detection_dataset
language:
  - en
  - el
  - it
  - es
  - ro
  - de
  - fr
  - pl
pipeline_tag: text-classification

XLM_RoBERTa-Multilingual-Clickbait-Detection

This model is a fine-tuned version of xlm-roberta-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2192
  • Micro F1: 0.9759
  • Macro F1: 0.9758
  • Accuracy: 0.9759

Test Set Macro-F1 scores

  • Multilingual test set: 97.28
  • en test set: 97.83
  • el test set: 97.32
  • it test set: 97.54
  • es test set: 97.67
  • ro test set: 97.40
  • de test set: 97.40
  • fr test set: 96.90
  • pl test set: 96.18

Intended uses & limitations

  • This model will be employed for an EU project.

Training and evaluation data

  • The "clickbait_detection_dataset" was translated from English to Greek, Italian, Spanish, Romanian, French and German using the Opus-mt.
  • The dataset was also translated from English to Polish using the M2M NMT.
  • The "EasyNMT" library was utilized to employ the NMT models.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4

Framework versions

  • Transformers 4.36.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.13.1
  • Tokenizers 0.15.0