File size: 2,321 Bytes
31fdc7d
 
 
 
 
0b7ab54
 
 
 
 
31fdc7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b7ab54
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
---
base_model:
- Qwen/Qwen2.5-7B-Instruct
datasets:
- chtmp223/CLIPPER
language:
- en
license: apache-2.0
library_name: transformers
pipeline_tag: text-generation
---

# Qwen2.5-7B-CLIPPER
Qwen2.5-7B-CLIPPER is a fine-tuned version of https://huggingface.co/Qwen/Qwen2.5-7B-Instruct using supervised finetuning over chtmp223/CLIPPER dataset. 
Please check [our paper](https://arxiv.org/abs/2502.14854) for more details on the method. 

## πŸ“’ Model Details

### Model Description

- **Language(s) (NLP):** English
- **License:** Apache-2.0
- **Finetuned from model:** https://huggingface.co/Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/https://huggingface.co/Qwen/Qwen2.5-7B-Instruct)

### Model Sources

- **Repository:** [Github repository](https://github.com/chtmp223/CLIPPER).
- **Paper:** [https://arxiv.org/abs/2502.14854](https://arxiv.org/abs/2502.14854)


## πŸ’» Training Details

### Training Data

[chtmp223/CLIPPER](https://huggingface.co/datasets/chtmp223/CLIPPER)

### Training Procedure

| **Configurations**               | **Values**   |
|----------------------------------|--------------|
| Hardware (Training and Inference)| 8xA100s      |
| Tracking                         | wandb        |
| batch size                       | 16           |
| gradient_checkpointing           | True         |
| learning_rate                    | 1.0e-6       |
| lr_scheduler_type                | cosine       |
| max_length                       | 131072       |
| num_train_epochs                 | 1            |\n| optim                            | adamw_torch  |\n\n#### Software\n\nTraining code is adapted from [https://github.com/Qihoo360/360-LLaMA-Factory/tree/1b5398f539c7d94a530f3f32b53553a3b1928314](https://github.com/Qihoo360/360-LLaMA-Factory/tree/1b5398f539c7d94a530f3f32b53553a3b1928314).\n\n## πŸ€— Inference\nInference is done with [vLLM](https://github.com/vllm-project/vllm) on 1 A100-80GB.  \n\n## πŸ“œ Citation \n\n```\n@misc{pham2025clippercompressionenableslongcontext,\n      title={CLIPPER: Compression enables long-context synthetic data generation}, \n      author={Chau Minh Pham and Yapei Chang and Mohit Iyyer},\n      year={2025},\n      eprint={2502.14854},\n      archivePrefix={arXiv},\n      primaryClass={cs.CL},\n      url={https://arxiv.org/abs/2502.14854}, \n}\n```