File size: 13,398 Bytes
8f2252f
77875f7
8f2252f
 
 
 
 
77875f7
8f2252f
 
 
77875f7
8f2252f
 
 
 
77875f7
8f2252f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77875f7
 
 
 
 
 
 
 
815a0c4
77875f7
 
 
 
 
 
 
3735d66
 
 
77875f7
 
 
 
 
3735d66
77875f7
 
 
 
d10e961
77875f7
 
 
 
 
 
3735d66
77875f7
3735d66
77875f7
 
8f2252f
 
 
 
77875f7
 
8f2252f
77875f7
8f2252f
77875f7
8f2252f
77875f7
8f2252f
 
 
77875f7
8f2252f
 
 
 
 
77875f7
8f2252f
894f232
8f2252f
894f232
8f2252f
 
894f232
8f2252f
 
 
 
 
77875f7
8f2252f
77875f7
8f2252f
 
 
 
 
815a0c4
8f2252f
77875f7
8f2252f
d10e961
8f2252f
 
d10e961
 
b791c77
d10e961
8f2252f
 
3735d66
b791c77
57e0d82
3735d66
57e0d82
 
 
b791c77
57e0d82
3735d66
b791c77
 
 
 
 
 
 
 
 
 
 
 
3735d66
d10e961
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
import io
import os
from typing import List

import cv2
import numpy as np
import pandas as pd
import timm
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as T
from albumentations import (CenterCrop, Compose, HorizontalFlip, Normalize,
                            PadIfNeeded, RandomBrightnessContrast, RandomCrop,
                            RandomResizedCrop, Resize, VerticalFlip)
from albumentations.pytorch import ToTensorV2
from PIL import Image
from timm.layers import LayerNorm2d, SelectAdaptivePool2d
from timm.models.metaformer import MlpHead
from torch.utils.data import DataLoader, Dataset
from tqdm import tqdm

DEFAULT_WIDTH = 518
DEFAULT_HEIGHT = 518

def get_transforms(*, data, model=None, width=None, height=None):
    assert data in ("train", "valid")

    width = width if width else DEFAULT_WIDTH
    height = height if height else DEFAULT_HEIGHT

    model_mean = list(model.default_cfg["mean"]) if model else (0.5, 0.5, 0.5)
    model_std = list(model.default_cfg["std"]) if model else (0.5, 0.5, 0.5)

    if data == "train":
        return Compose(
            [
                RandomResizedCrop(width, height, scale=(0.6, 1.0)),
                HorizontalFlip(p=0.5),
                VerticalFlip(p=0.5),
                RandomBrightnessContrast(p=0.2),
                Normalize(mean=model_mean, std=model_std),
                ToTensorV2(),
            ]
        )

    elif data == "valid":
        return Compose(
            [
                Resize(width, height),
                Normalize(mean=model_mean, std=model_std),
                ToTensorV2(),
            ]
        )

DIM = 518
BASE_PATH = "../data/DF_FULL"

def generate_embeddings(metadata_file_path, root_dir):

    metadata_df = pd.read_csv(metadata_file_path)

    transforms = get_transforms(data="valid", width=DIM, height=DIM)

    test_dataset = ImageMetadataDataset(
        metadata_df, local_filepath=root_dir, transform=transforms
    )

    loader = DataLoader(test_dataset, batch_size=3, shuffle=False, num_workers=4)

    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    model = timm.create_model("timm/vit_large_patch14_reg4_dinov2.lvd142m", pretrained=True)
    model = model.to(device)
    model.eval()

    all_embs = []
    for data in tqdm(loader):

        img, _ = data
        img = img.to(device)

        emb = model.forward(img)

        all_embs.append(emb.detach().cpu().numpy())

    all_embs = np.vstack(all_embs)

    embs_list = [x for x in all_embs]
    metadata_df["embedding"] = embs_list
    
    return metadata_df


TIME = ['m0', 'm1', 'd0', 'd1']
GEO = ['g0', 'g1', 'g2', 'g3', 'g4', 'g5', 'g_float']
SUBSTRATE = ["substrate_0",
    "substrate_1",
    "substrate_2",
    "substrate_3",
    "substrate_4",
    "substrate_5",
    "substrate_6",
    "substrate_7",
    "substrate_8",
    "substrate_9",
    "substrate_10",
    "substrate_11",
    "substrate_12",
    "substrate_13",
    "substrate_14",
    "substrate_15",
    "substrate_16",
    "substrate_17",
    "substrate_18",
    "substrate_19",
    "substrate_20",
    "substrate_21",
    "substrate_22",
    "substrate_23",
    "substrate_24",
    "substrate_25",
    "substrate_26",
    "substrate_27",
    "substrate_28",
    "substrate_29",
    "substrate_30",
    "metasubstrate_0",
    "metasubstrate_1",
    "metasubstrate_2",
    "metasubstrate_3",
    "metasubstrate_4",
    "metasubstrate_5",
    "metasubstrate_6",
    "metasubstrate_7",
    "metasubstrate_8",
    "metasubstrate_9",
    "habitat_0",
    "habitat_1",
    "habitat_2",
    "habitat_3",
    "habitat_4",
    "habitat_5",
    "habitat_6",
    "habitat_7",
    "habitat_8",
    "habitat_9",
    "habitat_10",
    "habitat_11",
    "habitat_12",
    "habitat_13",
    "habitat_14",
    "habitat_15",
    "habitat_16",
    "habitat_17",
    "habitat_18",
    "habitat_19",
    "habitat_20",
    "habitat_21",
    "habitat_22",
    "habitat_23",
    "habitat_24",
    "habitat_25",
    "habitat_26",
    "habitat_27",
    "habitat_28",
    "habitat_29",
    "habitat_30",
    "habitat_31",
]

class EmbeddingMetadataDataset(Dataset):
    def __init__(self, df):
        self.df = df

        self.emb = df['embedding']
        self.metadata_date = df[TIME].to_numpy()
        self.metadata_geo = df[GEO].to_numpy()
        self.metadata_substrate = df[SUBSTRATE].to_numpy()

    def __len__(self):
        return len(self.df)

    def __getitem__(self, idx):
        embedding = torch.Tensor(self.emb[idx].copy()).type(torch.float)

        metadata = {
            "date": torch.from_numpy(self.metadata_date[idx, :]).type(torch.float),
            "geo": torch.from_numpy(self.metadata_geo[idx, :]).type(torch.float),
            "substr": torch.from_numpy(self.metadata_substrate[idx, :]).type(torch.float),
        }

        return embedding, metadata
    

class ImageMetadataDataset(Dataset):
    def __init__(self, df, transform=None, local_filepath=None):
        self.df = df
        self.transform = transform
        self.local_filepath = local_filepath
        
        self.filepaths = df["image_path"].apply(lambda x: x.replace("jpg", "JPG")).to_list()
        self.metadata_date = df[TIME].to_numpy()
        self.metadata_geo = df[GEO].to_numpy()
        self.metadata_substrate = df[SUBSTRATE].to_numpy()


    def __len__(self):
        return len(self.df)

    def __getitem__(self, idx):
        file_path = os.path.join(self.local_filepath, self.filepaths[idx])

        try:
            image = cv2.imread(file_path)
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        except:
            print(file_path)

        if self.transform:
            augmented = self.transform(image=image)
            image = augmented["image"]

        metadata = {
            "date": torch.from_numpy(self.metadata_date[idx, :]).type(torch.float),
            "geo": torch.from_numpy(self.metadata_geo[idx, :]).type(torch.float),
            "substr": torch.from_numpy(self.metadata_substrate[idx, :]).type(torch.float),
        }

        return image, metadata

DATE_SIZE = 4
GEO_SIZE = 7
SUBSTRATE_SIZE = 73
NUM_CLASSES = 1717

class StarReLU(nn.Module):
    """
    StarReLU: s * relu(x) ** 2 + b
    """

    def __init__(
        self,
        scale_value=1.0,
        bias_value=0.0,
        scale_learnable=True,
        bias_learnable=True,
        mode=None,
        inplace=False,
    ):
        super().__init__()
        self.inplace = inplace
        self.relu = nn.ReLU(inplace=inplace)
        self.scale = nn.Parameter(
            scale_value * torch.ones(1), requires_grad=scale_learnable
        )
        self.bias = nn.Parameter(
            bias_value * torch.ones(1), requires_grad=bias_learnable
        )

    def forward(self, x):
        return self.scale * self.relu(x) ** 2 + self.bias

class FungiMEEModel(nn.Module):
    def __init__(
        self,
        num_classes=NUM_CLASSES,
        dim=1024,
    ):
        super().__init__()

        print("Setting up Pytorch Model")
        self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
        print(f"Using devide: {self.device}")


        self.date_embedding = MlpHead(
            dim=DATE_SIZE, num_classes=dim, mlp_ratio=128, act_layer=StarReLU
        )
        self.geo_embedding = MlpHead(
            dim=GEO_SIZE, num_classes=dim, mlp_ratio=128, act_layer=StarReLU
        )
        self.substr_embedding = MlpHead(
            dim=SUBSTRATE_SIZE,
            num_classes=dim,
            mlp_ratio=8,
            act_layer=StarReLU,
        )

        self.encoder = nn.TransformerEncoder(nn.TransformerEncoderLayer(d_model=dim, nhead=8, batch_first=True), num_layers=4)
        
        self.head = MlpHead(dim=dim, num_classes=num_classes, drop_rate=0)

        for param in self.parameters():
            if param.dim() > 1:
                nn.init.kaiming_normal_(param)


    def forward(self, img_emb, metadata):

        img_emb = img_emb.to(self.device)
        
        date_emb = self.date_embedding.forward(metadata["date"].to(self.device))
        geo_emb = self.geo_embedding.forward(metadata["geo"].to(self.device))
        substr_emb = self.substr_embedding.forward(metadata["substr"].to(self.device))

        full_emb = torch.stack((img_emb, date_emb, geo_emb, substr_emb), dim=1) #.unsqueeze(0)
        # print(full_emb.shape)

        cls_emb = self.encoder.forward(full_emb)[:, 0, :].squeeze(1)

        return self.head.forward(cls_emb)
    
    def predict(self, img_emb, metadata):
        
        logits = self.forward(img_emb, metadata)

        # Any preprocess happens here

        return logits.argmax(1).tolist()
    
class FungiEnsembleModel(nn.Module):

    def __init__(self, models, softmax=True) -> None:
        super().__init__()

        self.models = nn.ModuleList()
        self.softmax = softmax
        self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

        for model in models:
            model = model.to(self.device)
            model.eval()
            self.models.append(model)
        
    def forward(self, img_emb, metadata):

        img_emb = img_emb.to(self.device)

        probs = []        

        for model in self.models:
            logits = model.forward(img_emb, metadata)
            
            p = logits.softmax(dim=1).detach().cpu() if self.softmax else logits.detach().cpu()

            probs.append(p)

        return torch.stack(probs).mean(dim=0)
    
    def predict(self, img_emb, metadata):
        
        logits = self.forward(img_emb, metadata)

        # Any preprocess happens here

        return logits.argmax(1).tolist()
    

def is_gpu_available():
    """Check if the python package `onnxruntime-gpu` is installed."""
    return torch.cuda.is_available()

class PytorchWorker:
    """Run inference using ONNX runtime."""

    def __init__(self, model_path: str, model_name: str, number_of_categories: int = 1605):

        def _load_model(model_name, model_path):

            print("Setting up Pytorch Model")
            self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
            print(f"Using devide: {self.device}")

            model = timm.create_model(model_name, num_classes=0, pretrained=False)
            # weights = torch.load(model_path, map_location=self.device)
            # model.load_state_dict({w.replace("model.", ""): v for w, v in weights.items()})

            return model.to(self.device).eval()

        self.model = _load_model(model_name, model_path)

        self.transforms = T.Compose([T.Resize((518, 518)),
                                     T.ToTensor(),
                                     T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])


    def predict_image(self, image: np.ndarray):
        """Run inference using ONNX runtime.

        :param image: Input image as numpy array.
        :return: A list with logits and confidences.
        """

        self.model(self.transforms(image).unsqueeze(0).to(self.device))

        return [-1]


def make_submission(metadata_df, model_names=None):
    
    OUTPUT_CSV_PATH="./submission.csv"
    
    """Make submission with given """

    BASE_CKPT_PATH = "./checkpoints"

    model_names = model_names or os.listdir(BASE_CKPT_PATH)

    models = []

    for model_path in model_names:
        print("loading ", model_path)
        ckpt_path = os.path.join(BASE_CKPT_PATH, model_path)

        ckpt = torch.load(ckpt_path)
        model = FungiMEEModel()
        model.load_state_dict({w: ckpt['state_dict']["model." + w] for w in model.state_dict().keys()})
        model.eval()
        model.cuda()

        models.append(model)
    
    ensemble_model = FungiEnsembleModel(models)

    embedding_dataset = EmbeddingMetadataDataset(metadata_df)
    loader = DataLoader(embedding_dataset, batch_size=128, shuffle=False)

    preds = []
    for data in tqdm(loader):
        emb, metadata = data
        pred = ensemble_model.forward(emb, metadata)
        preds.append(pred)

    all_preds = torch.vstack(preds).numpy()

    preds_df = metadata_df[['observation_id', 'image_path']]
    preds_df['preds'] = [i for i in all_preds]
    preds_df = preds_df[['observation_id', 'preds']].groupby('observation_id').mean().reset_index()
    preds_df['class_id'] = preds_df['preds'].apply(lambda x: x.argmax() if x.argmax() <= 1603 else -1)
    preds_df[['observation_id', 'class_id']].to_csv(OUTPUT_CSV_PATH, index=None)

    print("Submission complete")

if __name__ == "__main__":

    MODEL_PATH = "metaformer-s-224.pth"
    MODEL_NAME = "timm/vit_base_patch14_reg4_dinov2.lvd142m"

    # Real submission
    # import zipfile

    with zipfile.ZipFile("/tmp/data/private_testset.zip", 'r') as zip_ref:
        zip_ref.extractall("/tmp/data")

    # metadata_file_path = "./test_preprocessed.csv"
    # test_metadata = pd.read_csv(metadata_file_path)

    # make_submission(
    #     test_metadata=test_metadata,
    #     model_path=MODEL_PATH,
    #     model_name=MODEL_NAME
    # )

    # Test submission

    metadata_file_path = "../trial_submission.csv"

    test_metadata = pd.read_csv(metadata_file_path)

    make_submission(
        test_metadata=test_metadata,
        model_path=MODEL_PATH,
        model_name=MODEL_NAME,
        images_root_path="../data/DF_FULL"
    )