File size: 10,040 Bytes
77875f7
8f2252f
 
77875f7
8f2252f
 
77875f7
8f2252f
 
 
e73e119
 
 
8f2252f
8f1fb11
c000764
 
 
 
8f2252f
8f1fb11
 
 
 
8f2252f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f1fb11
c000764
 
 
e73e119
c000764
e73e119
 
 
c000764
 
 
 
 
 
 
 
 
 
 
 
f0be6d7
c000764
e73e119
 
c000764
b1be50b
c000764
 
8f2252f
 
 
 
8f1fb11
8f2252f
 
 
 
 
 
 
 
 
 
 
 
 
8f1fb11
 
 
8f2252f
 
 
8f1fb11
8f2252f
c000764
8f1fb11
b1be50b
 
c000764
8f2252f
c000764
8f2252f
0fc6977
8f2252f
2e47c02
c000764
b1be50b
c000764
b1be50b
 
8f2252f
c000764
 
8f2252f
c000764
 
8f2252f
c000764
8f2252f
c000764
8f1fb11
c000764
 
 
 
 
 
 
 
8f2252f
8f1fb11
8f2252f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f1fb11
8f2252f
 
 
 
 
 
 
 
 
2e47c02
8f2252f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f1fb11
 
 
 
 
8f2252f
 
 
 
 
 
 
 
 
8f1fb11
8f2252f
 
 
 
b1be50b
8f2252f
 
 
 
8f1fb11
8f2252f
8f1fb11
8f2252f
 
 
8f1fb11
 
8f2252f
 
e73e119
8f2252f
 
 
2e47c02
8f2252f
 
 
 
 
8f1fb11
8f2252f
 
 
 
8f1fb11
8f2252f
 
 
8f1fb11
e73e119
8f2252f
 
 
8f1fb11
8f2252f
8f1fb11
8f2252f
 
 
 
 
8f1fb11
b1be50b
c000764
8f1fb11
 
8f2252f
77875f7
4598f99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0be6d7
4598f99
 
 
 
 
 
 
 
 
 
 
894f232
8f2252f
 
894f232
8f2252f
 
 
e73e119
8f2252f
77875f7
8f2252f
77875f7
8f1fb11
 
 
 
 
 
 
 
 
 
 
 
815a0c4
8f2252f
77875f7
8f1fb11
8f2252f
d10e961
96597c6
b1be50b
d10e961
b1be50b
4d6ee04
3735d66
b1be50b
4d6ee04
3735d66
b791c77
b1be50b
 
b791c77
b18eb82
3735d66
b18eb82
d10e961
b18eb82
f0be6d7
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
import os
import numpy as np
import pandas as pd
import timm
import torch
import torch.nn as nn
from PIL import Image
from timm.models.metaformer import MlpHead
from torch.utils.data import DataLoader, Dataset
from tqdm import tqdm
from albumentations import Compose, Normalize, Resize
from albumentations.pytorch import ToTensorV2
import cv2

DIM = 518
DATE_SIZE = 4
GEO_SIZE = 7
SUBSTRATE_SIZE = 73
NUM_CLASSES = 1717

TIME = ["m0", "m1", "d0", "d1"]
GEO = ["g0", "g1", "g2", "g3", "g4", "g5", "g_float"]
SUBSTRATE = [
    "substrate_0",
    "substrate_1",
    "substrate_2",
    "substrate_3",
    "substrate_4",
    "substrate_5",
    "substrate_6",
    "substrate_7",
    "substrate_8",
    "substrate_9",
    "substrate_10",
    "substrate_11",
    "substrate_12",
    "substrate_13",
    "substrate_14",
    "substrate_15",
    "substrate_16",
    "substrate_17",
    "substrate_18",
    "substrate_19",
    "substrate_20",
    "substrate_21",
    "substrate_22",
    "substrate_23",
    "substrate_24",
    "substrate_25",
    "substrate_26",
    "substrate_27",
    "substrate_28",
    "substrate_29",
    "substrate_30",
    "metasubstrate_0",
    "metasubstrate_1",
    "metasubstrate_2",
    "metasubstrate_3",
    "metasubstrate_4",
    "metasubstrate_5",
    "metasubstrate_6",
    "metasubstrate_7",
    "metasubstrate_8",
    "metasubstrate_9",
    "habitat_0",
    "habitat_1",
    "habitat_2",
    "habitat_3",
    "habitat_4",
    "habitat_5",
    "habitat_6",
    "habitat_7",
    "habitat_8",
    "habitat_9",
    "habitat_10",
    "habitat_11",
    "habitat_12",
    "habitat_13",
    "habitat_14",
    "habitat_15",
    "habitat_16",
    "habitat_17",
    "habitat_18",
    "habitat_19",
    "habitat_20",
    "habitat_21",
    "habitat_22",
    "habitat_23",
    "habitat_24",
    "habitat_25",
    "habitat_26",
    "habitat_27",
    "habitat_28",
    "habitat_29",
    "habitat_30",
    "habitat_31",
]


class ImageDataset(Dataset):
    def __init__(self, df, local_filepath):
        self.df = df
        self.transform = Compose(
            [
                Resize(DIM, DIM),
                Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
                ToTensorV2(),
            ]
        )

        self.local_filepath = local_filepath

        self.filepaths = df["image_path"].to_list()

    def __len__(self):
        return len(self.df)

    def __getitem__(self, idx):
        image_path = os.path.join(self.local_filepath, self.filepaths[idx])
        # print("Reading from ", image_path)

        image = cv2.imread(image_path)
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

        return self.transform(image=image)["image"]


class EmbeddingMetadataDataset(Dataset):
    def __init__(self, df):
        self.df = df

        self.emb = df["embedding"]
        self.metadata_date = df[TIME].to_numpy()
        self.metadata_geo = df[GEO].to_numpy()
        self.metadata_substrate = df[SUBSTRATE].to_numpy()

    def __len__(self):
        return len(self.df)

    def __getitem__(self, idx):
        embedding = torch.Tensor(self.emb[idx].copy()).type(torch.float)

        metadata = {
            "date": torch.from_numpy(self.metadata_date[idx, :]).type(torch.float),
            "geo": torch.from_numpy(self.metadata_geo[idx, :]).type(torch.float),
            "substr": torch.from_numpy(self.metadata_substrate[idx, :]).type(
                torch.float
            ),
        }

        return embedding, metadata


def generate_embeddings(metadata_file_path, root_dir):

    DINOV2_CKPT = "./checkpoints/dinov2.bin"

    metadata_df = pd.read_csv(metadata_file_path)

    test_dataset = ImageDataset(metadata_df, local_filepath=root_dir)

    loader = DataLoader(test_dataset, batch_size=3, shuffle=False)

    device = torch.device('cpu')
    model = timm.create_model(
        "timm/vit_large_patch14_reg4_dinov2.lvd142m", pretrained=False
    )
    weights = torch.load(DINOV2_CKPT)
    model.load_state_dict(weights)

    model = model.to(device)
    model.eval()

    all_embs = []
    for img in tqdm(loader):

        img = img.to(device)

        emb = model.forward(img)

        all_embs.append(emb.detach().cpu().numpy())

    all_embs = np.vstack(all_embs)

    embs_list = [x for x in all_embs]
    metadata_df["embedding"] = embs_list

    return metadata_df


class StarReLU(nn.Module):
    """
    StarReLU: s * relu(x) ** 2 + b
    """

    def __init__(
        self,
        scale_value=1.0,
        bias_value=0.0,
        scale_learnable=True,
        bias_learnable=True,
        mode=None,
        inplace=False,
    ):
        super().__init__()
        self.inplace = inplace
        self.relu = nn.ReLU(inplace=inplace)
        self.scale = nn.Parameter(
            scale_value * torch.ones(1), requires_grad=scale_learnable
        )
        self.bias = nn.Parameter(
            bias_value * torch.ones(1), requires_grad=bias_learnable
        )

    def forward(self, x):
        return self.scale * self.relu(x) ** 2 + self.bias


class FungiMEEModel(nn.Module):
    def __init__(
        self,
        num_classes=NUM_CLASSES,
        dim=1024,
    ):
        super().__init__()

        print("Setting up Pytorch Model")
        self.device = torch.device('cpu')
        print(f"Using devide: {self.device}")

        self.date_embedding = MlpHead(
            dim=DATE_SIZE, num_classes=dim, mlp_ratio=128, act_layer=StarReLU
        )
        self.geo_embedding = MlpHead(
            dim=GEO_SIZE, num_classes=dim, mlp_ratio=128, act_layer=StarReLU
        )
        self.substr_embedding = MlpHead(
            dim=SUBSTRATE_SIZE,
            num_classes=dim,
            mlp_ratio=8,
            act_layer=StarReLU,
        )

        self.encoder = nn.TransformerEncoder(
            nn.TransformerEncoderLayer(d_model=dim, nhead=8, batch_first=True),
            num_layers=4,
        )

        self.head = MlpHead(dim=dim, num_classes=num_classes, drop_rate=0)

        for param in self.parameters():
            if param.dim() > 1:
                nn.init.kaiming_normal_(param)

    def forward(self, img_emb, metadata):

        img_emb = img_emb.to(self.device)

        date_emb = self.date_embedding.forward(metadata["date"].to(self.device))
        geo_emb = self.geo_embedding.forward(metadata["geo"].to(self.device))
        substr_emb = self.substr_embedding.forward(metadata["substr"].to(self.device))

        full_emb = torch.stack((img_emb, date_emb, geo_emb, substr_emb), dim=1)

        cls_emb = self.encoder.forward(full_emb)[:, 0, :].squeeze(1)

        return self.head.forward(cls_emb)

    def predict(self, img_emb, metadata):

        logits = self.forward(img_emb, metadata)

        return logits.argmax(1).tolist()


class FungiEnsembleModel(nn.Module):

    def __init__(self, models) -> None:
        super().__init__()

        self.models = nn.ModuleList()
        self.device = torch.device('cpu')

        for model in models:
            model = model.to(self.device)
            model.eval()
            self.models.append(model)

    def forward(self, img_emb, metadata):

        img_emb = img_emb.to(self.device)

        probs = []

        for model in self.models:
            logits = model.forward(img_emb, metadata)

            p = logits.softmax(dim=1).detach().cpu()
            probs.append(p)

        return torch.stack(probs).mean(dim=0)

    def predict(self, img_emb, metadata):

        logits = self.forward(img_emb, metadata)

        # Any preprocess happens here

        return logits.argmax(1).tolist()


def make_submission(metadata_df):

    OUTPUT_CSV_PATH = "./submission.csv"
    BASE_CKPT_PATH = "./checkpoints"

    model_names = [
        "dino_2_optuna_05242231.ckpt",
        "dino_optuna_05241449.ckpt",
        "dino_optuna_05241257.ckpt",
        "dino_optuna_05241222.ckpt",
        "dino_2_optuna_05242055.ckpt",
        "dino_2_optuna_05242156.ckpt",
        "dino_2_optuna_05242344.ckpt",
    ]

    models = []

    for model_path in model_names:
        print("loading ", model_path)
        ckpt_path = os.path.join(BASE_CKPT_PATH, model_path)

        ckpt = torch.load(ckpt_path)
        model = FungiMEEModel()
        model.load_state_dict(
            {w: ckpt["model." + w] for w in model.state_dict().keys()}
        )
        model.eval()
        
        models.append(model)

    fungi_model = FungiEnsembleModel(models)

    # ckpt_path = os.path.join(BASE_CKPT_PATH, "dino_2_optuna_05242055.ckpt")

    # fungi_model = FungiMEEModel()
    # ckpt = torch.load(ckpt_path)
    # fungi_model.load_state_dict(
    #     {w: ckpt["model." + w] for w in fungi_model.state_dict().keys()}
    # )

    embedding_dataset = EmbeddingMetadataDataset(metadata_df)
    loader = DataLoader(embedding_dataset, batch_size=128, shuffle=False)

    preds = []
    for data in tqdm(loader):
        emb, metadata = data
        pred = fungi_model.forward(emb, metadata)
        preds.append(pred)

    all_preds = torch.vstack(preds).numpy()

    preds_df = metadata_df[["observation_id", "image_path"]]
    preds_df["preds"] = [i for i in all_preds]
    preds_df = (
        preds_df[["observation_id", "preds"]]
        .groupby("observation_id")
        .mean()
        .reset_index()
    )
    preds_df["class_id"] = preds_df["preds"].apply(
        lambda x: x.argmax() if x.argmax() <= 1603 else -1
    )
    preds_df[["observation_id", "class_id"]].to_csv(OUTPUT_CSV_PATH, index=None)

    print("Submission complete")


if __name__ == "__main__":

    # # # # # # Real submission
    import zipfile

    with zipfile.ZipFile("/tmp/data/private_testset.zip", "r") as zip_ref:
        zip_ref.extractall("/tmp/data/")

    metadata_file_path = "./_test_preprocessed.csv"
    root_dir = "/tmp/data/private_testset"

    # Test submission
    # metadata_file_path = "../trial_submission.csv"
    # root_dir = "../data/DF_FULL"

    ##############

    metadata_df = generate_embeddings(metadata_file_path, root_dir)

    make_submission(metadata_df)