ciCic's picture
Update README.md
0412140 verified
---
language:
- en
- de
- fr
- it
- pt
- hi
- es
- th
library_name: transformers
pipeline_tag: text-generation
tags:
- facebook
- meta
- pytorch
- llama-3
license: llama3.2
base_model:
- meta-llama/Llama-3.2-1B-Instruct
---
# Represents
A quantized version of Llama 3.2 1B Instruct with Activation-aware Weight Quantization (AWQ)[https://github.com/mit-han-lab/llm-awq]
## Use with transformers/autoawq
Starting with
- `transformers==4.45.1`
- `accelerate==0.34.2`
- `torch==2.3.1`
- `numpy==2.0.0`
- `autoawq==0.2.6`
Experimented with
- OS = Windows
- GPU = Nvidia GeForce RTX 3080 10gb
- CPU = Intel Core i5-9600K
- RAM = 32GB
### For CUDA users
**AutoAWQ**
NOTE: this example uses `fuse_layers=True` to fuse attention and mlp layers together for faster inference
```python
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer, TextStreamer
quant_id = "ciCic/llama-3.2-1B-Instruct-AWQ"
model = AutoAWQForCausalLM.from_quantized(quant_id, fuse_layers=True)
tokenizer = AutoTokenizer.from_pretrained(quant_id, trust_remote_code=True)
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
# Declare prompt
prompt = "You're standing on the surface of the Earth. "\
"You walk one mile south, one mile west and one mile north. "\
"You end up exactly where you started. Where are you?"
# Tokenization of the prompt
tokens = tokenizer(
prompt,
return_tensors='pt'
).input_ids.cuda()
# Generate output in a streaming fashion
generation_output = model.generate(
tokens,
streamer=streamer,
max_new_tokens=512
)
```
**Transformers**
```python
from transformers import AutoTokenizer, TextStreamer, AutoModelForCausalLM
import torch
quant_id = "ciCic/llama-3.2-1B-Instruct-AWQ"
tokenizer = AutoTokenizer.from_pretrained(quant_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
quant_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
device_map="cuda"
)
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
# Convert prompt to tokens
prompt = "You're standing on the surface of the Earth. "\
"You walk one mile south, one mile west and one mile north. "\
"You end up exactly where you started. Where are you?"
tokens = tokenizer(
prompt,
return_tensors='pt'
).input_ids.cuda()
# Generate output
generation_output = model.generate(
tokens,
streamer=streamer,
max_new_tokens=512
)
```
#### Issue/Solution
- torch.from_numpy fails
- This might be due to certain issues within `torch==2.3.1` .cpp files. Since AutoAWQ uses torch version 2.3.1, instead of most recent, this issue might occur within module `marlin.py -> def _get_perms()`
- Module path: Python\Python311\site-packages\awq\modules\linear\marlin.py
- Solution:
- there are several operations to numpy (cpu) then back to tensor (gpu) which could be completely replaced by tensor without having to use numpy, this will solve (temporarily) the from_numpy() issue
```python
def _get_perms():
perm = []
for i in range(32):
perm1 = []
col = i // 4
for block in [0, 1]:
for row in [
2 * (i % 4),
2 * (i % 4) + 1,
2 * (i % 4 + 4),
2 * (i % 4 + 4) + 1,
]:
perm1.append(16 * row + col + 8 * block)
for j in range(4):
perm.extend([p + 256 * j for p in perm1])
# perm = np.array(perm)
perm = torch.asarray(perm)
# interleave = np.array([0, 2, 4, 6, 1, 3, 5, 7])
interleave = torch.asarray([0, 2, 4, 6, 1, 3, 5, 7])
perm = perm.reshape((-1, 8))[:, interleave].ravel()
# perm = torch.from_numpy(perm)
scale_perm = []
for i in range(8):
scale_perm.extend([i + 8 * j for j in range(8)])
scale_perm_single = []
for i in range(4):
scale_perm_single.extend([2 * i + j for j in [0, 1, 8, 9, 16, 17, 24, 25]])
return perm, scale_perm, scale_perm_single
```