cindyloo337's picture
End of training
5d8bed3 verified
metadata
base_model: stabilityai/stable-diffusion-2-1
library_name: diffusers
license: openrail++
inference: true
instance_prompt: a red chicken in the style of <s0><s1>
widget:
  - text: a <s0><s1> chicken on a beach, in the style of <s0><s1>
    output:
      url: image_0.png
  - text: a <s0><s1> chicken on a beach, in the style of <s0><s1>
    output:
      url: image_1.png
  - text: a <s0><s1> chicken on a beach, in the style of <s0><s1>
    output:
      url: image_2.png
  - text: a <s0><s1> chicken on a beach, in the style of <s0><s1>
    output:
      url: image_3.png
tags:
  - text-to-image
  - diffusers
  - diffusers-training
  - lora
  - template:sd-lorastable-diffusion
  - stable-diffusion-diffusers
  - text-to-image
  - diffusers
  - diffusers-training
  - lora
  - template:sd-lorastable-diffusion
  - stable-diffusion-diffusers

SD1.5 LoRA DreamBooth - cindyloo337/sbne-chicken-sd21-lora

Prompt
a <s0><s1> chicken on a beach, in the style of <s0><s1>
Prompt
a <s0><s1> chicken on a beach, in the style of <s0><s1>
Prompt
a <s0><s1> chicken on a beach, in the style of <s0><s1>
Prompt
a <s0><s1> chicken on a beach, in the style of <s0><s1>

Model description

These are cindyloo337/sbne-chicken-sd21-lora LoRA adaption weights for stabilityai/stable-diffusion-2-1.

Download model

Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke

Use it with the 🧨 diffusers library

from diffusers import AutoPipelineForText2Image
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
        
pipeline = AutoPipelineForText2Image.from_pretrained('runwayml/stable-diffusion-v1-5', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('cindyloo337/sbne-chicken-sd21-lora', weight_name='pytorch_lora_weights.safetensors')
embedding_path = hf_hub_download(repo_id='cindyloo337/sbne-chicken-sd21-lora', filename='sbne-chicken-sd21-lora_emb.safetensors', repo_type="model")
state_dict = load_file(embedding_path)
pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)
        
image = pipeline('a <s0><s1> chicken on a beach, in the style of <s0><s1>').images[0]

For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers

Trigger words

To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:

to trigger concept TOK → use <s0><s1> in your prompt

Details

All Files & versions.

The weights were trained using 🧨 diffusers Advanced Dreambooth Training Script.

LoRA for the text encoder was enabled. False.

Pivotal tuning was enabled: True.

Special VAE used for training: None.

Intended uses & limitations

How to use

# TODO: add an example code snippet for running this diffusion pipeline

Limitations and bias

[TODO: provide examples of latent issues and potential remediations]

Training details

[TODO: describe the data used to train the model]