metadata
library_name: transformers
language:
- es
license: apache-2.0
base_model: openai/whisper-small
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- atc-co-spanish
metrics:
- wer
model-index:
- name: whisper-small-atc-co-spanish
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: atc-co-spanish
type: atc-co-spanish
args: 'config: es, split: train'
metrics:
- name: Wer
type: wer
value: 55.55555555555556
whisper-small-atc-co-spanish
This model is a fine-tuned version of openai/whisper-small on the atc-co-spanish dataset. It achieves the following results on the evaluation set:
- Loss: 1.4043
- Wer: 55.5556
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 500
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1.5633 | 14.2857 | 50 | 1.7417 | 65.0794 |
0.2582 | 28.5714 | 100 | 1.3265 | 60.3175 |
0.0009 | 42.8571 | 150 | 1.2653 | 52.3810 |
0.0003 | 57.1429 | 200 | 1.3243 | 53.9683 |
0.0002 | 71.4286 | 250 | 1.3494 | 53.9683 |
0.0002 | 85.7143 | 300 | 1.3700 | 53.9683 |
0.0001 | 100.0 | 350 | 1.3853 | 55.5556 |
0.0001 | 114.2857 | 400 | 1.3966 | 55.5556 |
0.0001 | 128.5714 | 450 | 1.4019 | 55.5556 |
0.0001 | 142.8571 | 500 | 1.4043 | 55.5556 |
Framework versions
- Transformers 4.45.1
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0