File size: 8,646 Bytes
cf9284c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import time
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
logging,
)
import torch
import json
import re
# Activate 4-bit precision base model loading
use_4bit = True
# Compute dtype for 4-bit base models
bnb_4bit_compute_dtype = "float16"
# Quantization type (fp4 or nf4)
bnb_4bit_quant_type = "nf4"
use_nested_quant = False
# Load the entire model on the GPU 0
device_map = {"": 0}
compute_dtype = getattr(torch, bnb_4bit_compute_dtype)
bnb_config = BitsAndBytesConfig(
load_in_4bit=use_4bit,
bnb_4bit_quant_type=bnb_4bit_quant_type,
bnb_4bit_compute_dtype=compute_dtype,
bnb_4bit_use_double_quant=use_nested_quant,
)
model_name = "cjsanjay/llama-3-8B-gorilla-meraki_v2"
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
device_map=device_map
)
# Load LLaMA tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"
# tokenizer.add_tokens(["<START_Q>", "<END_Q>", "<START_A>", "<END_A>"], special_tokens=True)
logging.set_verbosity(logging.CRITICAL)
# model.resize_token_embeddings(len(tokenizer))
# def get_question_prompt_old(data):
# instruction = f"### Instruction\n{data['Instruction']}"
# context = f"### Context\n{data['Functions']}" if len(data["Functions"]) > 0 else None
# # join all the parts together
# prompt = "\n\n".join([i for i in [instruction, context] if i is not None])
# return prompt
#
#
# # def generate_prompt_for_llama3(data):
# # system = "You are an AI programming assistant, utilizing the finetuned LLM model you only answer questions related to function calling using the provided functions. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer."
# # output_string = json.dumps(data['Output'])
# # functions_string = json.dumps(data['Functions'])
# # prompt = f"""<|start_header_id|>system<|end_header_id|> {system}\n### Instruction: <<functions>> {functions_string} <|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: {data['Instruction']}<|eot_id|><|start_header_id|>assistant<|end_header_id|> {output_string}<|eot_id|>"""
# # return prompt
#
#
# def generate_prompt_for_llama3_test(data):
#
# functions_string = json.dumps(data['Functions'])
# prompt = f"""<|start_header_id|>system<|end_header_id|> {system}\n### Instruction: <<functions>> {functions_string} <|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: {data['Instruction']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
# return prompt
#
with open('meraki_full_unknown_fn_dataset_llama_v1.json', 'r') as json_file:
known_test_dataset_gorilla = json.load(json_file)
matched = 0
skipped = 0
failed = 0
total = len(known_test_dataset_gorilla)
failed_questions = []
skipped_questions = []
accuracy = {}
i = 0
processed_questions = []
pattern = r'<|im_start|>assistant(.*?)(?:<|im_end|>|$)'
system = ("You are an AI programming assistant, utilizing the finetuned LLM model you only answer questions related to "
"function calling using the provided functions. For politically sensitive questions, security and privacy "
"issues, and other non-computer science questions, you will refuse to answer. Use ")
def extract_assistant_function_response(r_patter, generated_text):
"""
:param r_patter:
:param generated_text:
:return:
"""
m_result = re.findall(pattern, seq['generated_text'], re.DOTALL)
# # Remove leading and trailing whitespace from the matches
m_result = [match.strip() for match in m_result]
for match in m_result:
if match.find("api_name") > -1:
return match.strip()
return None
for d in known_test_dataset_gorilla:
i += 1
# prompt = generate_prompt_for_llama3_test(d)
# tokenized_input = tokenizer.tokenize(prompt)
# if len(tokenized_input) > 4096:
# skipped += 1
# skipped_questions.append(d)
# print (f"Skipped: {i}, token_size: {len(tokenized_input)}")
# continue
functions_string = json.dumps(d['Functions'])
messages = [
{"role": "system", "content": f"{system}\n### Instruction: <<functions>> {functions_string}"},
{"role": "user", "content": d['Instruction']},
]
processed_questions.append(d)
pipeline1 = pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
tokenizer=tokenizer
)
prompt = pipeline1.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
terminators = [
pipeline1.tokenizer.eos_token_id,
pipeline1.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = pipeline1(
prompt,
max_new_tokens=512,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
final_assistant_response = None
assistant_raw_response = ""
for seq in outputs:
assistant_raw_response = seq['generated_text']
final_assistant_response = extract_assistant_function_response(pattern, seq['generated_text'])
try:
if final_assistant_response is None:
d["GotOutput"] = str(assistant_raw_response)
failed_questions.append(d)
failed += 1
print(f"Improper response from assistant Expected: {d['Output']}, Got: {assistant_raw_response}")
output_data = final_assistant_response
try:
output_data_json = json.loads(final_assistant_response)
if "arguments" in output_data_json:
try:
arg_dict_ans = json.loads(output_data_json["arguments"].replace("'", '"').replace("True", "true").replace("False", "false"))
arg_dict_input = json.loads(d["Output"]["arguments"].replace("'", '"').replace("True", "true").replace("False", "false"))
except Exception as ex:
print (f"Json loading failed for args string: {str(ex)}, Falling back to string comparison, args_string: {output_data_json['arguments']}")
raise
if output_data_json["api_name"] == d["Output"]["api_name"] and arg_dict_ans == arg_dict_input:
matched += 1
print ("Matched")
else:
d["GotOutput"] = str(output_data)
failed_questions.append(d)
failed += 1
print(f"JSON mismatch Expected: {d['Output']}, Got: {output_data_json}")
else:
if output_data_json == d["Output"]:
matched += 1
print ("Matched")
else:
d["GotOutput"] = str(output_data)
failed_questions.append(d)
failed += 1
print(f"JSON mismatch Expected: {d['Output']}, Got: {output_data_json}")
except Exception as ex:
print (f"Json loading failed: {str(ex)}, Falling back to string comparison")
if str(output_data) == str(d["Output"]):
matched += 1
print ("Matched")
else:
d["GotOutput"] = str(output_data)
failed_questions.append(d)
failed += 1
print(f"Expected: {d['Output']}, Got: {output_data}")
except Exception as ex:
print(f"Expected: {d['Output']}, Got: {output_data}, error: {str(ex)}")
failed_questions.append(d)
failed += 1
del pipeline1
del outputs
pipeline1 = None
outputs = None
with torch.no_grad():
torch.cuda.empty_cache()
print(f"Done: {i}/{total}, Skipped: {skipped}, matched: {matched}, failed: {failed}")
if len(processed_questions) >= 100:
break
time.sleep(1)
input()
accuracy["matched"] = matched
accuracy["total"] = total - skipped
accuracy["recall"] = float(accuracy["matched"])/accuracy["total"]
with open("failed_questions_meraki_unknown_test_dataset_llama3_gorilla.json", "w") as f:
json.dump(failed_questions, f, indent=4)
with open("skipped_questions_meraki_unknown_test_dataset_llama3_gorilla.json", "w") as f:
json.dump(skipped_questions, f, indent=4)
with open("accuracy_meraki_unknown_test_dataset_llama3_gorilla", "w") as f:
json.dump(accuracy, f, indent=4)
|