|
--- |
|
license: cc-by-nc-4.0 |
|
datasets: |
|
- clane9/NSD-Flat |
|
--- |
|
|
|
# Model card for `boldgpt_small_patch10.kmq` |
|
|
|
 |
|
|
|
A Vision Transformer (ViT) model trained on BOLD activation maps from [NSD-Flat](https://huggingface.co/datasets/clane9/NSD-Flat). Patches were quantized to discrete tokens using k-means (`KMeansTokenizer`). The training objective was to auto-regressively predict the next patch with shuffled patch order and cross-entropy loss. |
|
|
|
## Dependencies |
|
|
|
- [boldGPT](https://github.com/clane9/boldGPT) |
|
|
|
## Usage |
|
|
|
```python |
|
from boldgpt.data import ActivityTransform |
|
from boldgpt.models import create_model |
|
from datasets import load_dataset |
|
|
|
model = create_model("boldgpt_small_patch10.kmq", pretrained=True) |
|
|
|
dataset = load_dataset("clane9/NSD-Flat", split="train") |
|
dataset.set_format("torch") |
|
|
|
transform = ActivityTransform() |
|
batch = dataset[:1] |
|
batch["activity"] = transform(batch["activity"]) |
|
|
|
# output: (B, N + 1, K) predicted next token logits |
|
output, state = model(batch) |
|
``` |
|
|
|
## Reproducing |
|
|
|
- Training command: |
|
|
|
```bash |
|
torchrun --standalone --nproc_per_node=4 \ |
|
scripts/train_gpt.py --out_dir results \ |
|
--model boldgpt_small \ |
|
--ps 10 --vs 1024 --vocab_state checkpoints/ps-10_vs-1024_vss-4000_seed-42/tok_state.pt \ |
|
--shuffle --epochs 1000 --bs 512 \ |
|
--workers 0 --amp --compile --wandb |
|
``` |
|
- Commit: `f9720ca52d6fa6b3eb47a34cf95f8e18a8683e4c` |
|
|