Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: tiiuae/falcon-7b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - ab57c479f118eb4b_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/ab57c479f118eb4b_train_data.json
  type:
    field_instruction: article
    field_output: highlights
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: clarxus/954f84fa-4ba4-4cbe-a17f-b11ebf8edbf3
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/ab57c479f118eb4b_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
special_tokens:
  pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: c6f27e0d-6f40-46e4-8150-ea3f0d0a78a8
wandb_project: Gradients-On-Seven
wandb_run: your_name
wandb_runid: c6f27e0d-6f40-46e4-8150-ea3f0d0a78a8
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null

954f84fa-4ba4-4cbe-a17f-b11ebf8edbf3

This model is a fine-tuned version of tiiuae/falcon-7b on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3973

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
No log 0.0004 1 2.1585
8.1589 0.0039 9 1.9014
6.0913 0.0078 18 1.6237
6.4354 0.0118 27 1.5228
6.0854 0.0157 36 1.4740
5.8387 0.0196 45 1.4452
5.6012 0.0235 54 1.4264
5.5957 0.0275 63 1.4119
5.653 0.0314 72 1.4042
5.7366 0.0353 81 1.3994
5.5423 0.0392 90 1.3977
5.7656 0.0431 99 1.3973

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
6
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for clarxus/954f84fa-4ba4-4cbe-a17f-b11ebf8edbf3

Base model

tiiuae/falcon-7b
Adapter
(395)
this model