detr_finetuned_30
This model is a fine-tuned version of facebook/detr-resnet-50 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.1249
- Map: 0.2684
- Map 50: 0.5212
- Map 75: 0.2578
- Map Small: 0.22
- Map Medium: 0.377
- Map Large: 0.395
- Mar 1: 0.1497
- Mar 10: 0.3903
- Mar 100: 0.4383
- Mar Small: 0.398
- Mar Medium: 0.5486
- Mar Large: 0.6314
- Map Basketball: 0.0431
- Mar 100 Basketball: 0.147
- Map Player: 0.3203
- Mar 100 Player: 0.5743
- Map Referee: 0.4419
- Mar 100 Referee: 0.5936
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Basketball | Mar 100 Basketball | Map Player | Mar 100 Player | Map Referee | Mar 100 Referee |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 461 | 1.7649 | 0.0495 | 0.1443 | 0.0205 | 0.0386 | 0.0955 | 0.1299 | 0.0262 | 0.1028 | 0.1539 | 0.1341 | 0.2707 | 0.5936 | 0.0048 | 0.0142 | 0.1345 | 0.3828 | 0.0093 | 0.0646 |
1.9775 | 2.0 | 922 | 1.5434 | 0.1063 | 0.2515 | 0.0673 | 0.0772 | 0.1801 | 0.4147 | 0.0497 | 0.2231 | 0.2853 | 0.2337 | 0.3809 | 0.6431 | 0.0004 | 0.0211 | 0.2031 | 0.4458 | 0.1154 | 0.389 |
1.7156 | 3.0 | 1383 | 1.4497 | 0.139 | 0.3385 | 0.0796 | 0.1042 | 0.3513 | 0.4331 | 0.0722 | 0.2634 | 0.3277 | 0.2719 | 0.519 | 0.6221 | 0.0019 | 0.042 | 0.21 | 0.4515 | 0.2049 | 0.4895 |
1.5817 | 4.0 | 1844 | 1.3623 | 0.191 | 0.4015 | 0.1554 | 0.1364 | 0.2989 | 0.4691 | 0.1062 | 0.2979 | 0.3572 | 0.3144 | 0.4426 | 0.6789 | 0.002 | 0.0515 | 0.2474 | 0.4896 | 0.3236 | 0.5305 |
1.4789 | 5.0 | 2305 | 1.3544 | 0.1874 | 0.4189 | 0.1338 | 0.1415 | 0.357 | 0.4253 | 0.1031 | 0.2946 | 0.36 | 0.3174 | 0.5002 | 0.6838 | 0.0032 | 0.0591 | 0.2486 | 0.4917 | 0.3104 | 0.5292 |
1.4235 | 6.0 | 2766 | 1.2867 | 0.211 | 0.4444 | 0.1715 | 0.154 | 0.3671 | 0.298 | 0.118 | 0.3084 | 0.3629 | 0.3113 | 0.5314 | 0.6814 | 0.0032 | 0.0494 | 0.2607 | 0.4919 | 0.3692 | 0.5474 |
1.3454 | 7.0 | 3227 | 1.3163 | 0.2024 | 0.4324 | 0.1654 | 0.1381 | 0.362 | 0.4507 | 0.114 | 0.3076 | 0.3557 | 0.3114 | 0.4828 | 0.651 | 0.0052 | 0.0581 | 0.2397 | 0.4762 | 0.3623 | 0.5329 |
1.3253 | 8.0 | 3688 | 1.2467 | 0.2169 | 0.4386 | 0.1888 | 0.1576 | 0.3525 | 0.4086 | 0.1128 | 0.327 | 0.3884 | 0.344 | 0.5275 | 0.6926 | 0.0105 | 0.0693 | 0.2758 | 0.525 | 0.3643 | 0.5708 |
1.276 | 9.0 | 4149 | 1.2343 | 0.2242 | 0.4614 | 0.1877 | 0.1659 | 0.3289 | 0.3643 | 0.1273 | 0.3341 | 0.3883 | 0.3438 | 0.4961 | 0.6814 | 0.0094 | 0.0896 | 0.2701 | 0.5176 | 0.3932 | 0.5579 |
1.2626 | 10.0 | 4610 | 1.2377 | 0.2324 | 0.4659 | 0.2072 | 0.1803 | 0.3146 | 0.3717 | 0.1261 | 0.3469 | 0.3967 | 0.3548 | 0.4797 | 0.624 | 0.0101 | 0.0849 | 0.2777 | 0.5198 | 0.4094 | 0.5855 |
1.2274 | 11.0 | 5071 | 1.2398 | 0.2358 | 0.4759 | 0.2075 | 0.1795 | 0.3235 | 0.4632 | 0.1338 | 0.3479 | 0.3952 | 0.3457 | 0.4835 | 0.6647 | 0.0128 | 0.0864 | 0.2831 | 0.5323 | 0.4114 | 0.5669 |
1.2026 | 12.0 | 5532 | 1.1964 | 0.2407 | 0.4828 | 0.2133 | 0.1808 | 0.3974 | 0.4632 | 0.1329 | 0.3571 | 0.4064 | 0.3481 | 0.5671 | 0.6966 | 0.0151 | 0.0897 | 0.2866 | 0.5305 | 0.4203 | 0.5991 |
1.2026 | 13.0 | 5993 | 1.2058 | 0.2367 | 0.4879 | 0.201 | 0.1919 | 0.3161 | 0.4254 | 0.1314 | 0.3515 | 0.398 | 0.3516 | 0.4787 | 0.6789 | 0.019 | 0.0999 | 0.287 | 0.531 | 0.404 | 0.5632 |
1.1779 | 14.0 | 6454 | 1.1949 | 0.2365 | 0.4716 | 0.2179 | 0.1759 | 0.3254 | 0.4736 | 0.1268 | 0.359 | 0.4064 | 0.3592 | 0.5701 | 0.6495 | 0.0203 | 0.1028 | 0.2945 | 0.542 | 0.3946 | 0.5743 |
1.1578 | 15.0 | 6915 | 1.2130 | 0.2291 | 0.468 | 0.2024 | 0.1673 | 0.3503 | 0.4148 | 0.1238 | 0.3551 | 0.4049 | 0.3668 | 0.485 | 0.6059 | 0.02 | 0.1102 | 0.2821 | 0.5349 | 0.3851 | 0.5697 |
1.131 | 16.0 | 7376 | 1.2012 | 0.2384 | 0.478 | 0.2139 | 0.1848 | 0.2908 | 0.4595 | 0.1314 | 0.3597 | 0.4048 | 0.3616 | 0.5554 | 0.6382 | 0.0174 | 0.1082 | 0.291 | 0.5388 | 0.4068 | 0.5672 |
1.1208 | 17.0 | 7837 | 1.1768 | 0.2517 | 0.4928 | 0.2365 | 0.2057 | 0.3507 | 0.4399 | 0.1352 | 0.3697 | 0.4208 | 0.38 | 0.5615 | 0.6201 | 0.0222 | 0.1082 | 0.3005 | 0.5574 | 0.4324 | 0.5969 |
1.0992 | 18.0 | 8298 | 1.1605 | 0.2403 | 0.4776 | 0.2194 | 0.1967 | 0.2987 | 0.4002 | 0.1315 | 0.3655 | 0.4148 | 0.3761 | 0.5148 | 0.5838 | 0.0216 | 0.1004 | 0.2958 | 0.5538 | 0.4034 | 0.5901 |
1.0793 | 19.0 | 8759 | 1.1529 | 0.2496 | 0.4954 | 0.2307 | 0.2071 | 0.3352 | 0.4166 | 0.133 | 0.3752 | 0.4255 | 0.3868 | 0.5096 | 0.6431 | 0.0278 | 0.1219 | 0.3072 | 0.567 | 0.4139 | 0.5877 |
1.0648 | 20.0 | 9220 | 1.1573 | 0.2539 | 0.505 | 0.2326 | 0.2033 | 0.3472 | 0.4315 | 0.1389 | 0.3818 | 0.4308 | 0.3896 | 0.5701 | 0.6275 | 0.0327 | 0.1387 | 0.3021 | 0.5606 | 0.427 | 0.5931 |
1.05 | 21.0 | 9681 | 1.1417 | 0.257 | 0.505 | 0.2463 | 0.2135 | 0.3753 | 0.4454 | 0.1392 | 0.3862 | 0.4331 | 0.3949 | 0.5359 | 0.6696 | 0.0339 | 0.1388 | 0.3103 | 0.5656 | 0.4267 | 0.5948 |
1.0362 | 22.0 | 10142 | 1.1439 | 0.259 | 0.5124 | 0.2466 | 0.2112 | 0.3458 | 0.3431 | 0.1406 | 0.3832 | 0.4307 | 0.3895 | 0.4829 | 0.6402 | 0.0326 | 0.1252 | 0.312 | 0.5706 | 0.4324 | 0.5963 |
1.0248 | 23.0 | 10603 | 1.1317 | 0.2641 | 0.5182 | 0.2514 | 0.215 | 0.3594 | 0.3094 | 0.1445 | 0.3838 | 0.4319 | 0.3942 | 0.5376 | 0.6137 | 0.0334 | 0.1296 | 0.3123 | 0.5687 | 0.4467 | 0.5972 |
1.0173 | 24.0 | 11064 | 1.1485 | 0.2581 | 0.5057 | 0.247 | 0.2102 | 0.3723 | 0.4356 | 0.1414 | 0.3819 | 0.4295 | 0.3906 | 0.5416 | 0.6681 | 0.0334 | 0.1372 | 0.3158 | 0.5696 | 0.4251 | 0.5817 |
1.0082 | 25.0 | 11525 | 1.1344 | 0.2642 | 0.5158 | 0.2495 | 0.2176 | 0.3517 | 0.4473 | 0.1467 | 0.3843 | 0.4322 | 0.3915 | 0.554 | 0.6377 | 0.0354 | 0.1386 | 0.3158 | 0.5685 | 0.4414 | 0.5894 |
1.0082 | 26.0 | 11986 | 1.1267 | 0.2648 | 0.5175 | 0.2514 | 0.2147 | 0.3598 | 0.4399 | 0.1489 | 0.3868 | 0.4341 | 0.3942 | 0.5624 | 0.6294 | 0.0381 | 0.1422 | 0.3181 | 0.5706 | 0.4381 | 0.5894 |
1.0006 | 27.0 | 12447 | 1.1296 | 0.2687 | 0.5208 | 0.2581 | 0.2198 | 0.3694 | 0.4415 | 0.1506 | 0.3887 | 0.4359 | 0.3967 | 0.5455 | 0.6333 | 0.0439 | 0.1464 | 0.3188 | 0.5727 | 0.4434 | 0.5885 |
0.9989 | 28.0 | 12908 | 1.1237 | 0.2675 | 0.5191 | 0.2562 | 0.2202 | 0.3769 | 0.3991 | 0.1484 | 0.3897 | 0.4374 | 0.397 | 0.5484 | 0.6333 | 0.0411 | 0.1454 | 0.3204 | 0.5735 | 0.441 | 0.5932 |
0.9952 | 29.0 | 13369 | 1.1251 | 0.2687 | 0.5204 | 0.2582 | 0.221 | 0.3689 | 0.3963 | 0.15 | 0.3904 | 0.4385 | 0.3984 | 0.5485 | 0.6314 | 0.0426 | 0.1474 | 0.3207 | 0.5744 | 0.4427 | 0.5936 |
0.9909 | 30.0 | 13830 | 1.1249 | 0.2684 | 0.5212 | 0.2578 | 0.22 | 0.377 | 0.395 | 0.1497 | 0.3903 | 0.4383 | 0.398 | 0.5486 | 0.6314 | 0.0431 | 0.147 | 0.3203 | 0.5743 | 0.4419 | 0.5936 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 44
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for clee9/detr_finetuned_30
Base model
facebook/detr-resnet-50