File size: 9,325 Bytes
7677a6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a421d34
 
 
 
 
 
 
 
7677a6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a421d34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7677a6d
 
 
 
a421d34
 
7677a6d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
- generated_from_trainer
datasets:
- funsd
model-index:
- name: layout-lm
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layout-lm

This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6748
- Answer: {'precision': 0.7245575221238938, 'recall': 0.8096415327564895, 'f1': 0.7647402218330415, 'number': 809}
- Header: {'precision': 0.3464566929133858, 'recall': 0.3697478991596639, 'f1': 0.35772357723577236, 'number': 119}
- Question: {'precision': 0.7756183745583038, 'recall': 0.8244131455399061, 'f1': 0.7992717341829768, 'number': 1065}
- Overall Precision: 0.7291
- Overall Recall: 0.7913
- Overall F1: 0.7589
- Overall Accuracy: 0.8136

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Answer                                                                                                      | Header                                                                                                      | Question                                                                                                     | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 1.7656        | 1.0   | 10   | 1.5482          | {'precision': 0.030390738060781478, 'recall': 0.02595797280593325, 'f1': 0.028, 'number': 809}              | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                 | {'precision': 0.31988041853512705, 'recall': 0.20093896713615023, 'f1': 0.24682814302191464, 'number': 1065} | 0.1728            | 0.1179         | 0.1402     | 0.3707           |
| 1.4041        | 2.0   | 20   | 1.1664          | {'precision': 0.15247252747252749, 'recall': 0.13720642768850433, 'f1': 0.14443721535458687, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                 | {'precision': 0.46790409899458624, 'recall': 0.568075117370892, 'f1': 0.5131467345207804, 'number': 1065}    | 0.3539            | 0.3593         | 0.3566     | 0.6164           |
| 1.0549        | 3.0   | 30   | 0.8895          | {'precision': 0.521044992743106, 'recall': 0.4437577255871446, 'f1': 0.479305740987984, 'number': 809}      | {'precision': 0.25, 'recall': 0.08403361344537816, 'f1': 0.12578616352201258, 'number': 119}                | {'precision': 0.5932336742722266, 'recall': 0.707981220657277, 'f1': 0.6455479452054794, 'number': 1065}     | 0.5615            | 0.5635         | 0.5625     | 0.7226           |
| 0.8144        | 4.0   | 40   | 0.7445          | {'precision': 0.621978021978022, 'recall': 0.6996291718170581, 'f1': 0.658522396742292, 'number': 809}      | {'precision': 0.2753623188405797, 'recall': 0.15966386554621848, 'f1': 0.20212765957446807, 'number': 119}  | {'precision': 0.6641477749790092, 'recall': 0.7427230046948357, 'f1': 0.7012411347517731, 'number': 1065}    | 0.6341            | 0.6904         | 0.6611     | 0.7620           |
| 0.6601        | 5.0   | 50   | 0.6786          | {'precision': 0.6608505997818975, 'recall': 0.7490729295426453, 'f1': 0.7022016222479722, 'number': 809}    | {'precision': 0.34615384615384615, 'recall': 0.226890756302521, 'f1': 0.27411167512690354, 'number': 119}   | {'precision': 0.6853932584269663, 'recall': 0.8018779342723005, 'f1': 0.7390739939420164, 'number': 1065}    | 0.6635            | 0.7461         | 0.7024     | 0.7912           |
| 0.558         | 6.0   | 60   | 0.6751          | {'precision': 0.6495375128468653, 'recall': 0.7812113720642769, 'f1': 0.7093153759820426, 'number': 809}    | {'precision': 0.34615384615384615, 'recall': 0.226890756302521, 'f1': 0.27411167512690354, 'number': 119}   | {'precision': 0.7348017621145374, 'recall': 0.7830985915492957, 'f1': 0.7581818181818181, 'number': 1065}    | 0.6830            | 0.7491         | 0.7145     | 0.7873           |
| 0.4876        | 7.0   | 70   | 0.6439          | {'precision': 0.6867469879518072, 'recall': 0.7750309023485785, 'f1': 0.7282229965156795, 'number': 809}    | {'precision': 0.2672413793103448, 'recall': 0.2605042016806723, 'f1': 0.26382978723404255, 'number': 119}   | {'precision': 0.735144312393888, 'recall': 0.8131455399061033, 'f1': 0.7721801159161837, 'number': 1065}     | 0.6905            | 0.7647         | 0.7257     | 0.8059           |
| 0.431         | 8.0   | 80   | 0.6333          | {'precision': 0.7019650655021834, 'recall': 0.7948084054388134, 'f1': 0.7455072463768115, 'number': 809}    | {'precision': 0.3157894736842105, 'recall': 0.3025210084033613, 'f1': 0.30901287553648066, 'number': 119}   | {'precision': 0.7440878378378378, 'recall': 0.8272300469483568, 'f1': 0.7834593152512227, 'number': 1065}    | 0.7046            | 0.7827         | 0.7416     | 0.8119           |
| 0.3849        | 9.0   | 90   | 0.6338          | {'precision': 0.713495575221239, 'recall': 0.7972805933250927, 'f1': 0.7530647985989491, 'number': 809}     | {'precision': 0.3465346534653465, 'recall': 0.29411764705882354, 'f1': 0.3181818181818182, 'number': 119}   | {'precision': 0.7697022767075307, 'recall': 0.8253521126760563, 'f1': 0.7965564114182148, 'number': 1065}    | 0.7261            | 0.7822         | 0.7531     | 0.8189           |
| 0.3741        | 10.0  | 100  | 0.6533          | {'precision': 0.7054429028815368, 'recall': 0.8170580964153276, 'f1': 0.7571592210767468, 'number': 809}    | {'precision': 0.31092436974789917, 'recall': 0.31092436974789917, 'f1': 0.31092436974789917, 'number': 119} | {'precision': 0.7736185383244206, 'recall': 0.8150234741784037, 'f1': 0.7937814357567444, 'number': 1065}    | 0.7190            | 0.7858         | 0.7509     | 0.8133           |
| 0.3184        | 11.0  | 110  | 0.6556          | {'precision': 0.7065803667745415, 'recall': 0.8096415327564895, 'f1': 0.7546082949308756, 'number': 809}    | {'precision': 0.3203125, 'recall': 0.3445378151260504, 'f1': 0.33198380566801616, 'number': 119}            | {'precision': 0.7630901287553649, 'recall': 0.8347417840375587, 'f1': 0.7973094170403587, 'number': 1065}    | 0.7140            | 0.7953         | 0.7524     | 0.8104           |
| 0.3038        | 12.0  | 120  | 0.6681          | {'precision': 0.72271714922049, 'recall': 0.8022249690976514, 'f1': 0.7603983596953721, 'number': 809}      | {'precision': 0.3305084745762712, 'recall': 0.3277310924369748, 'f1': 0.32911392405063294, 'number': 119}   | {'precision': 0.7851387645478961, 'recall': 0.8234741784037559, 'f1': 0.8038496791934006, 'number': 1065}    | 0.7337            | 0.7852         | 0.7586     | 0.8155           |
| 0.2922        | 13.0  | 130  | 0.6667          | {'precision': 0.7233809001097695, 'recall': 0.8145859085290482, 'f1': 0.7662790697674419, 'number': 809}    | {'precision': 0.36036036036036034, 'recall': 0.33613445378151263, 'f1': 0.34782608695652173, 'number': 119} | {'precision': 0.7810599478714162, 'recall': 0.844131455399061, 'f1': 0.8113718411552348, 'number': 1065}     | 0.7354            | 0.8018         | 0.7672     | 0.8150           |
| 0.2685        | 14.0  | 140  | 0.6738          | {'precision': 0.7296996662958843, 'recall': 0.8108776266996292, 'f1': 0.7681498829039812, 'number': 809}    | {'precision': 0.3384615384615385, 'recall': 0.3697478991596639, 'f1': 0.35341365461847385, 'number': 119}   | {'precision': 0.7788546255506608, 'recall': 0.8300469483568075, 'f1': 0.8036363636363637, 'number': 1065}    | 0.7320            | 0.7948         | 0.7621     | 0.8131           |
| 0.2668        | 15.0  | 150  | 0.6748          | {'precision': 0.7245575221238938, 'recall': 0.8096415327564895, 'f1': 0.7647402218330415, 'number': 809}    | {'precision': 0.3464566929133858, 'recall': 0.3697478991596639, 'f1': 0.35772357723577236, 'number': 119}   | {'precision': 0.7756183745583038, 'recall': 0.8244131455399061, 'f1': 0.7992717341829768, 'number': 1065}    | 0.7291            | 0.7913         | 0.7589     | 0.8136           |


### Framework versions

- Transformers 4.43.3
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1