File size: 2,877 Bytes
4602be6
 
 
 
 
 
 
b3907ef
4602be6
 
 
 
b7c9d67
b3907ef
b7c9d67
 
4602be6
 
 
 
 
 
 
 
 
 
c66892d
4602be6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b945d24
4602be6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
model-index:
- name: lince-zero
  results: []
license: apache-2.0
language:
- es
thumbnail: https://huggingface.co/clibrain/lince-zero/resolve/main/lince_logo_1.png
pipeline_tag: text-generation
---


<div style="text-align:center;width:250px;height:250px;">
    <img src="https://huggingface.co/clibrain/lince-zero/resolve/main/lince_logo_1.png" alt="lince logo"">
</div>

# Lince Zero 
**Lince** is model fine-tuned on a massive and original corpus of Spanish instructions.

## Model description 🧠

TBA


## Training and evaluation data 📚

We created an instruction dataset following the format or popular datasets in the field such as *Alpaca* and *Dolly* and augmented it to reach **80k** samples.


### Training hyperparameters ⚙

TBA

### Training results 🗒️

TBA


### Example of usage 👩‍💻
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoTokenizer

model_id = "clibrain/lince-zero"

tokenizer = AutoTokenizer.from_pretrained(model_id)

model = AutoModelForCausalLM.from_pretrained(model_id).to("cuda")


def create_instruction(instruction, input_data=None, context=None):
    sections = {
        "Instrucción": instruction,
        "Entrada": input_data,
        "Contexto": context,
    }

    system_prompt = "A continuación hay una instrucción que describe una tarea, junto con una entrada que proporciona más contexto. Escriba una respuesta que complete adecuadamente la solicitud.\n\n"
    prompt = system_prompt

    for title, content in sections.items():
        if content is not None:
            prompt += f"### {title}:\n{content}\n\n"

    prompt += "### Respuesta:\n"

    return prompt


def generate(
        instruction,
        input=None,
        context=None,
        max_new_tokens=128,
        temperature=0.1,
        top_p=0.75,
        top_k=40,
        num_beams=4,
        **kwargs
):
    
    prompt = create_instruction(instruction, input, context)
    print(prompt)
    inputs = tokenizer(prompt, return_tensors="pt")
    input_ids = inputs["input_ids"].to("cuda")
    attention_mask = inputs["attention_mask"].to("cuda")
    generation_config = GenerationConfig(
        temperature=temperature,
        top_p=top_p,
        top_k=top_k,
        num_beams=num_beams,
        **kwargs,
    )
    with torch.no_grad():
        generation_output = model.generate(
            input_ids=input_ids,
            attention_mask=attention_mask,
            generation_config=generation_config,
            return_dict_in_generate=True,
            output_scores=True,
            max_new_tokens=max_new_tokens,
            early_stopping=True
        )
    s = generation_output.sequences[0]
    output = tokenizer.decode(s)
    return output.split("### Respuesta:")[1].lstrip("\n")

instruction = "Dame una lista de lugares a visitar en España."
print(generate(instruction))
```