|
--- |
|
license: apache-2.0 |
|
base_model: google/flan-t5-large |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: flan-t5-large-medication-lists |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# flan-t5-large-medication-lists |
|
|
|
This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1217 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.03 |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 5.8837 | 0.14 | 10 | 3.0384 | |
|
| 2.3005 | 0.29 | 20 | 1.3933 | |
|
| 6.7398 | 0.43 | 30 | 1.1939 | |
|
| 1.1056 | 0.58 | 40 | 0.9215 | |
|
| 0.5642 | 0.72 | 50 | 0.4442 | |
|
| 0.6142 | 0.87 | 60 | 0.3734 | |
|
| 0.2249 | 1.01 | 70 | 0.4756 | |
|
| 11.7466 | 1.16 | 80 | 0.3282 | |
|
| 0.1689 | 1.3 | 90 | 0.3007 | |
|
| 0.2137 | 1.45 | 100 | 0.2909 | |
|
| 0.1703 | 1.59 | 110 | 0.4483 | |
|
| 16.8974 | 1.74 | 120 | 0.3103 | |
|
| 0.1207 | 1.88 | 130 | 0.2340 | |
|
| 0.2416 | 2.03 | 140 | 0.2377 | |
|
| 0.1477 | 2.17 | 150 | 0.1635 | |
|
| 0.1021 | 2.32 | 160 | 0.2011 | |
|
| 8.3316 | 2.46 | 170 | 0.3211 | |
|
| 14.5038 | 2.61 | 180 | 0.3357 | |
|
| 0.0668 | 2.75 | 190 | 0.2597 | |
|
| 12.083 | 2.9 | 200 | 0.2205 | |
|
| 0.1218 | 3.04 | 210 | 0.1276 | |
|
| 13.2802 | 3.19 | 220 | 0.1452 | |
|
| 0.0587 | 3.33 | 230 | 0.1759 | |
|
| 0.0714 | 3.48 | 240 | 0.1789 | |
|
| 0.0819 | 3.62 | 250 | 0.1466 | |
|
| 0.0461 | 3.77 | 260 | 0.1457 | |
|
| 0.0597 | 3.91 | 270 | 0.1560 | |
|
| 8.6414 | 4.06 | 280 | 0.1322 | |
|
| 17.3547 | 4.2 | 290 | 0.1115 | |
|
| 16.9251 | 4.35 | 300 | 0.1273 | |
|
| 0.0516 | 4.49 | 310 | 0.1229 | |
|
| 0.0335 | 4.64 | 320 | 0.1210 | |
|
| 17.3581 | 4.78 | 330 | 0.1211 | |
|
| 0.0234 | 4.93 | 340 | 0.1217 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.3 |
|
- Pytorch 2.0.1 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|