cnicu's picture
update model card README.md
1cf376e
|
raw
history blame
1.72 kB
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- accuracy
model-index:
- name: tweet_emotions_classifier
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
config: emotion
split: test
args: emotion
metrics:
- name: Accuracy
type: accuracy
value: 0.7914438502673797
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tweet_emotions_classifier
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6042
- Accuracy: 0.7914
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.8464 | 1.0 | 408 | 0.6180 | 0.7931 |
| 0.4583 | 2.0 | 816 | 0.5700 | 0.8037 |
### Framework versions
- Transformers 4.27.2
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2