cnicu's picture
Update README.md
616bd14
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - tweet_eval
metrics:
  - accuracy
model-index:
  - name: tweet_emotions_classifier
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: tweet_eval
          type: tweet_eval
          config: emotion
          split: test
          args: emotion
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7914438502673797

Tweet Emotion Classifier

This model is a fine-tuned version of distilbert-base-uncased on the tweet_eval dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6042
  • Accuracy: 0.7914

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.8464 1.0 408 0.6180 0.7931
0.4583 2.0 816 0.5700 0.8037

Framework versions

  • Transformers 4.27.2
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2