|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: biolinkbert-mednli |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# biolinkbert-mednli |
|
|
|
This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-large](https://huggingface.co/michiyasunaga/BioLinkBERT-large) on [MedNLI](https://physionet.org/content/mednli/1.0.0/). |
|
It achieves the following results on the evaluation set: |
|
``` |
|
{ |
|
"eval_accuracy": 0.8788530230522156, |
|
"eval_loss": 0.7843484878540039, |
|
"eval_runtime": 39.7009, |
|
"eval_samples": 1395, |
|
"eval_samples_per_second": 35.138, |
|
"eval_steps_per_second": 1.108 |
|
} |
|
``` |
|
|
|
The accuracy for the test set is |
|
``` |
|
{ |
|
"eval_accuracy": 0.8607594966888428, |
|
"eval_loss": 0.879707932472229, |
|
"eval_runtime": 27.4404, |
|
"eval_samples": 1395, |
|
"eval_samples_per_second": 51.821, |
|
"eval_steps_per_second": 1.64 |
|
} |
|
``` |
|
The labels are |
|
``` |
|
"id2label": { |
|
"0": "entailment", |
|
"1": "neutral", |
|
"2": "contradiction" |
|
}, |
|
``` |
|
|
|
## Training procedure |
|
|
|
This model checkpoint is made by [mednli.py](https://huggingface.co/cnut1648/biolinkbert-mednli/blob/main/mednli.py) by the following command: |
|
```shell |
|
root=/path/to/mednli/; |
|
python mednli.py \ |
|
--model_name_or_path michiyasunaga/BioLinkBERT-large \ |
|
--do_train --train_file ${root}/mli_train_v1.jsonl \ |
|
--do_eval --validation_file ${root}/mli_dev_v1.jsonl \ |
|
--do_predict --test_file ${root}/mli_test_v1.jsonl \ |
|
--max_seq_length 512 --fp16 --per_device_train_batch_size 16 --gradient_accumulation_steps 2 \ |
|
--learning_rate 3e-5 --warmup_ratio 0.5 --num_train_epochs 10 \ |
|
--output_dir ./biolinkbert_mednli |
|
``` |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.5 |
|
- num_epochs: 10.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.22.2 |
|
- Pytorch 1.13.0+cu117 |
|
- Datasets 2.4.0 |
|
- Tokenizers 0.12.1 |
|
|