|
--- |
|
widget: |
|
- text: "KOMMISSIONENS BESLUTNING\naf 6. marts 2006\nom klassificering af visse byggevarers ydeevne med hensyn til reaktion ved brand for så vidt angår trægulve samt vægpaneler og vægbeklædning i massivt træ\n(meddelt under nummer K(2006) 655" |
|
datasets: |
|
- multi_eurlex |
|
metrics: |
|
- f1 |
|
model-index: |
|
- name: coastalcph/danish-legal-longformer-eurlex-sd |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Danish EURLEX (Level 2) |
|
dataset: |
|
name: multi_eurlex |
|
type: multi_eurlex |
|
config: multi_eurlex |
|
split: validation |
|
metrics: |
|
- name: Micro-F1 |
|
type: micro-f1 |
|
value: 0.76144 |
|
- name: Macro-F1 |
|
type: macro-f1 |
|
value: 0.52878 |
|
--- |
|
|
|
# Model description |
|
|
|
This model is a fine-tuned version of [coastalcph/danish-legal-longformer-base](https://huggingface.co/coastalcph/danish-legal-longformer-base) on the Danish part of [MultiEURLEX](https://huggingface.co/datasets/multi_eurlex) dataset using an additional Spectral Decoupling penalty ([Pezeshki et al., 2020](https://arxiv.org/abs/2011.09468). |
|
|
|
## Training and evaluation data |
|
|
|
The Danish part of [MultiEURLEX](https://huggingface.co/datasets/multi_eurlex) dataset. |
|
|
|
## Use of Model |
|
|
|
### As a text classifier: |
|
|
|
```python |
|
from transformers import pipeline |
|
import numpy as np |
|
|
|
# Init text classification pipeline |
|
text_cls_pipe = pipeline(task="text-classification", |
|
model="coastalcph/danish-legal-longformer-eurlex", |
|
use_auth_token='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') |
|
|
|
# Encode and Classify document |
|
predictions = text_cls_pipe("KOMMISSIONENS BESLUTNING\naf 6. marts 2006\nom klassificering af visse byggevarers " |
|
"ydeevne med hensyn til reaktion ved brand for så vidt angår trægulve samt vægpaneler " |
|
"og vægbeklædning i massivt træ\n(meddelt under nummer K(2006) 655") |
|
|
|
# Print prediction |
|
print(predictions) |
|
# [{'label': 'building and public works', 'score': 0.9626012444496155}] |
|
``` |
|
|
|
### As a feature extractor (document embedder): |
|
|
|
```python |
|
from transformers import pipeline |
|
import numpy as np |
|
|
|
# Init feature extraction pipeline |
|
feature_extraction_pipe = pipeline(task="feature-extraction", |
|
model="coastalcph/danish-legal-longformer-eurlex", |
|
use_auth_token='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') |
|
|
|
# Encode document |
|
predictions = feature_extraction_pipe("KOMMISSIONENS BESLUTNING\naf 6. marts 2006\nom klassificering af visse byggevarers " |
|
"ydeevne med hensyn til reaktion ved brand for så vidt angår trægulve samt vægpaneler " |
|
"og vægbeklædning i massivt træ\n(meddelt under nummer K(2006) 655") |
|
|
|
# Use CLS token representation as document embedding |
|
document_features = token_wise_features[0][0] |
|
|
|
print(document_features.shape) |
|
# (768,) |
|
``` |
|
|
|
## Framework versions |
|
|
|
- Transformers 4.18.0 |
|
- Pytorch 1.12.0+cu113 |
|
- Datasets 2.0.0 |
|
- Tokenizers 0.12.1 |
|
|