cobrakenji/granite-34b-code-base-Q2_K-GGUF
This model was converted to GGUF format from ibm-granite/granite-34b-code-base
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Use with llama.cpp
Install llama.cpp through brew.
brew install ggerganov/ggerganov/llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo cobrakenji/granite-34b-code-base-Q2_K-GGUF --model granite-34b-code-base.Q2_K.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo cobrakenji/granite-34b-code-base-Q2_K-GGUF --model granite-34b-code-base.Q2_K.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m granite-34b-code-base.Q2_K.gguf -n 128
- Downloads last month
- 7
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Datasets used to train cobrakenji/granite-34b-code-base-Q2_K-GGUF
Evaluation results
- pass@1 on MBPPself-reported47.200
- pass@1 on MBPP+self-reported53.100
- pass@1 on HumanEvalSynthesis(Python)self-reported48.200
- pass@1 on HumanEvalSynthesis(Python)self-reported54.900
- pass@1 on HumanEvalSynthesis(Python)self-reported61.600
- pass@1 on HumanEvalSynthesis(Python)self-reported40.200
- pass@1 on HumanEvalSynthesis(Python)self-reported50.000
- pass@1 on HumanEvalSynthesis(Python)self-reported39.600
- pass@1 on HumanEvalSynthesis(Python)self-reported42.700
- pass@1 on HumanEvalSynthesis(Python)self-reported26.200