Commit
·
943ecba
1
Parent(s):
10f1d26
Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +11 -11
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -1.52 +/- 0.21
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d8f91ec442e0bf4378ad0b1c2347ec316a7053ba316df81847007a87bbf1085
|
3 |
+
size 108025
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -41,12 +41,12 @@
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
-
"num_timesteps":
|
45 |
-
"_total_timesteps":
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
@@ -55,10 +55,10 @@
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[ 0.
|
60 |
-
"desired_goal": "[[-0.
|
61 |
-
"observation": "[[ 0.
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,9 +66,9 @@
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[-0.
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
@@ -77,13 +77,13 @@
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
-
"_n_updates":
|
87 |
"n_steps": 5,
|
88 |
"gamma": 0.99,
|
89 |
"gae_lambda": 1.0,
|
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
+
"num_timesteps": 100000,
|
45 |
+
"_total_timesteps": 100000,
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
+
"start_time": 1679253327866942508,
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAATQJLPqXJNb1Zw+g+TQJLPqXJNb1Zw+g+TQJLPqXJNb1Zw+g+TQJLPqXJNb1Zw+g+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAASqOGP0hGPL/Qbbq/pAjRviN3Yj6WiAw/pfHZP+Qeqz6BsYW9ayJLviMfnD91F60+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABNAks+pck1vVnD6D5dH6Q8PPrxuxBMjjxNAks+pck1vVnD6D5dH6Q8PPrxuxBMjjxNAks+pck1vVnD6D5dH6Q8PPrxuxBMjjxNAks+pck1vVnD6D5dH6Q8PPrxuxBMjjyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.19825096 -0.04438176 0.45461538]\n [ 0.19825096 -0.04438176 0.45461538]\n [ 0.19825096 -0.04438176 0.45461538]\n [ 0.19825096 -0.04438176 0.45461538]]",
|
60 |
+
"desired_goal": "[[ 1.0518582 -0.7354474 -1.4564762 ]\n [-0.40826905 0.2211576 0.54895914]\n [ 1.7026869 0.33422005 -0.06527997]\n [-0.19837348 1.2197002 0.3380696 ]]",
|
61 |
+
"observation": "[[ 0.19825096 -0.04438176 0.45461538 0.02003449 -0.00738457 0.01737025]\n [ 0.19825096 -0.04438176 0.45461538 0.02003449 -0.00738457 0.01737025]\n [ 0.19825096 -0.04438176 0.45461538 0.02003449 -0.00738457 0.01737025]\n [ 0.19825096 -0.04438176 0.45461538 0.02003449 -0.00738457 0.01737025]]"
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAFBkAvvXeGD45cII++QeBPZl8571r3WE+39BXvVrYBr7QA4w+d6aRve1Zk70ULpg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.12509567 0.14928801 0.25476244]\n [ 0.06300349 -0.11303062 0.2205712 ]\n [-0.05268943 -0.13168469 0.2734666 ]\n [-0.07111829 -0.07194886 0.29722655]]",
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7fKtD+tN+7+UhpRSlIwBbJRLMowBdJRHQHDLTHXEqDt1fZQoaAZoCWgPQwhNamgDsEH9v5SGlFKUaBVLMmgWR0BwyV6a9bosdX2UKGgGaAloD0MIYDlCBvLMAMCUhpRSlGgVSzJoFkdAcMdtjkMkQnV9lChoBmgJaA9DCAgAjj17bvW/lIaUUpRoFUsyaBZHQHDFiMglnh91fZQoaAZoCWgPQwiSrwRSYlf7v5SGlFKUaBVLMmgWR0Bw1HQXyiEhdX2UKGgGaAloD0MIuTgqN1FL+b+UhpRSlGgVSzJoFkdAcNKJ+UhV2nV9lChoBmgJaA9DCLsru2BwTfe/lIaUUpRoFUsyaBZHQHDQnbM5fdB1fZQoaAZoCWgPQwhdUrXdBF/+v5SGlFKUaBVLMmgWR0Bwzrs8gZCOdX2UKGgGaAloD0MIRRDn4QSm/b+UhpRSlGgVSzJoFkdAcN/l18stkHV9lChoBmgJaA9DCEW5NH7hVfu/lIaUUpRoFUsyaBZHQHDd+0ojOcF1fZQoaAZoCWgPQwj3sBcK2M78v5SGlFKUaBVLMmgWR0Bw3A3xWkrPdX2UKGgGaAloD0MIghq+hXWDAsCUhpRSlGgVSzJoFkdAcNoqC6H0snV9lChoBmgJaA9DCKQYINEEyvu/lIaUUpRoFUsyaBZHQHDq9CRfWtl1fZQoaAZoCWgPQwhQU8vW+qL2v5SGlFKUaBVLMmgWR0Bw6Qq3EyckdX2UKGgGaAloD0MIjX+fceHA/r+UhpRSlGgVSzJoFkdAcOcc2R7qp3V9lChoBmgJaA9DCFA6kWCq2fS/lIaUUpRoFUsyaBZHQHDlO4gA6uJ1fZQoaAZoCWgPQwhkkLsIU9T7v5SGlFKUaBVLMmgWR0Bw9qFfzBhydX2UKGgGaAloD0MI43FRLSLK/b+UhpRSlGgVSzJoFkdAcPS4LThHb3V9lChoBmgJaA9DCCNKe4MvzPi/lIaUUpRoFUsyaBZHQHDyzJZGKAJ1fZQoaAZoCWgPQwio4VtYN973v5SGlFKUaBVLMmgWR0Bw8PKDCgscdX2UKGgGaAloD0MIVOI6xhXX9r+UhpRSlGgVSzJoFkdAcQLK6FuejHV9lChoBmgJaA9DCJ0SEJNw4fu/lIaUUpRoFUsyaBZHQHEA4l6Z6Ut1fZQoaAZoCWgPQwjtYS8UsN36v5SGlFKUaBVLMmgWR0Bw/vVoYekpdX2UKGgGaAloD0MIYhQEj29v+7+UhpRSlGgVSzJoFkdAcP0TsIE8rHV9lChoBmgJaA9DCI1feCXJs/m/lIaUUpRoFUsyaBZHQHEO8EFGG211fZQoaAZoCWgPQwjj/E0oRMD7v5SGlFKUaBVLMmgWR0BxDQaWHDaXdX2UKGgGaAloD0MIk1M7w9TW+r+UhpRSlGgVSzJoFkdAcQsfWMCLdnV9lChoBmgJaA9DCF8oYDsYMfu/lIaUUpRoFUsyaBZHQHEJPkq+ajN1fZQoaAZoCWgPQwj7WSxF8tX4v5SGlFKUaBVLMmgWR0BxGt48lolEdX2UKGgGaAloD0MIttlYiXkW+r+UhpRSlGgVSzJoFkdAcRj6ol2NenV9lChoBmgJaA9DCAUzpmCN8/q/lIaUUpRoFUsyaBZHQHEXDp9qk/N1fZQoaAZoCWgPQwhw7URJSKT/v5SGlFKUaBVLMmgWR0BxFS0LMLWqdX2UKGgGaAloD0MIN1DgnXw6/L+UhpRSlGgVSzJoFkdAcSXJcgQpWnV9lChoBmgJaA9DCIYgByXM9Pi/lIaUUpRoFUsyaBZHQHEj26wt8NR1fZQoaAZoCWgPQwhHAaJgxtQAwJSGlFKUaBVLMmgWR0BxIeqABkqddX2UKGgGaAloD0MIbk26LZEL+7+UhpRSlGgVSzJoFkdAcSACx/ustHV9lChoBmgJaA9DCMBbIEHxI/u/lIaUUpRoFUsyaBZHQHEszFZPl+51fZQoaAZoCWgPQwjqWRDK+3j4v5SGlFKUaBVLMmgWR0BxKt6NVBD5dX2UKGgGaAloD0MIJCnpYWg1/7+UhpRSlGgVSzJoFkdAcSjtapxWDHV9lChoBmgJaA9DCMCSq1j8pgDAlIaUUpRoFUsyaBZHQHEnCXhOxjd1fZQoaAZoCWgPQwiGqphKP2H5v5SGlFKUaBVLMmgWR0BxM/EMspXqdX2UKGgGaAloD0MIjIaMR6mE/r+UhpRSlGgVSzJoFkdAcTICIUJv53V9lChoBmgJaA9DCK3e4XZo+AHAlIaUUpRoFUsyaBZHQHEwEMw1zhh1fZQoaAZoCWgPQwjLorCLokf1v5SGlFKUaBVLMmgWR0BxLikcjqwAdX2UKGgGaAloD0MI+ptQiICD+r+UhpRSlGgVSzJoFkdAcTsEU0vXb3V9lChoBmgJaA9DCAWk/Q+wlva/lIaUUpRoFUsyaBZHQHE5FoL5RCR1fZQoaAZoCWgPQwjEr1jDRe77v5SGlFKUaBVLMmgWR0BxNyetjkMkdX2UKGgGaAloD0MIcy8wKxRp/L+UhpRSlGgVSzJoFkdAcTVA4GUwBnV9lChoBmgJaA9DCCLH1jOE4/a/lIaUUpRoFUsyaBZHQHFCLjghr311fZQoaAZoCWgPQwgJUFPL1rr3v5SGlFKUaBVLMmgWR0BxQECLdepodX2UKGgGaAloD0MILIL/rWRH+b+UhpRSlGgVSzJoFkdAcT5P7el9B3V9lChoBmgJaA9DCNz2Peqvl/q/lIaUUpRoFUsyaBZHQHE8aUeMhox1fZQoaAZoCWgPQwjt9IO6SGH7v5SGlFKUaBVLMmgWR0BxSUtwrDqGdX2UKGgGaAloD0MIm1YKgVwi+r+UhpRSlGgVSzJoFkdAcUddy1eBx3V9lChoBmgJaA9DCNIZGHlZ0/e/lIaUUpRoFUsyaBZHQHFFbCm/Fit1fZQoaAZoCWgPQwiopiTrcHT9v5SGlFKUaBVLMmgWR0BxQ4ZgogFHdX2UKGgGaAloD0MIbxCtFW3O+L+UhpRSlGgVSzJoFkdAcVBJ3PiT+3V9lChoBmgJaA9DCIv/O6JCdfy/lIaUUpRoFUsyaBZHQHFOXQla8pV1fZQoaAZoCWgPQwiV9DC0Orn3v5SGlFKUaBVLMmgWR0BxTGu+yquKdX2UKGgGaAloD0MItrqcEhBT/b+UhpRSlGgVSzJoFkdAcUqFhG6PKnV9lChoBmgJaA9DCKBtNeuML/m/lIaUUpRoFUsyaBZHQHFXfRzBAOd1fZQoaAZoCWgPQwinJVZGI9/5v5SGlFKUaBVLMmgWR0BxVY65oXbedX2UKGgGaAloD0MIQxuADYgQ+L+UhpRSlGgVSzJoFkdAcVOdAxBVuXV9lChoBmgJaA9DCFKazeMwGPq/lIaUUpRoFUsyaBZHQHFRtnscABF1fZQoaAZoCWgPQwjLoNrgRHT3v5SGlFKUaBVLMmgWR0BxXmPKdQO4dX2UKGgGaAloD0MIHThnRGnv/b+UhpRSlGgVSzJoFkdAcVx5cTrVv3V9lChoBmgJaA9DCJZem42V2PW/lIaUUpRoFUsyaBZHQHFaiJwbVBl1fZQoaAZoCWgPQwg2d/S/XMv2v5SGlFKUaBVLMmgWR0BxWKIcinpCdX2UKGgGaAloD0MIdR2qKcn6/r+UhpRSlGgVSzJoFkdAcWWNhmXgL3V9lChoBmgJaA9DCPfKvFXXIfu/lIaUUpRoFUsyaBZHQHFjnrhR64V1fZQoaAZoCWgPQwj/If32dSD5v5SGlFKUaBVLMmgWR0BxYazRhMJydX2UKGgGaAloD0MIPQytTs7Q9b+UhpRSlGgVSzJoFkdAcV/Fz+3pfXV9lChoBmgJaA9DCMtJKH0hpPi/lIaUUpRoFUsyaBZHQHFsvC/Glyl1fZQoaAZoCWgPQwirksg+yPL/v5SGlFKUaBVLMmgWR0Bxas3gk1MudX2UKGgGaAloD0MIXknyXN9H+L+UhpRSlGgVSzJoFkdAcWjeXRgJC3V9lChoBmgJaA9DCG+df7vsV/m/lIaUUpRoFUsyaBZHQHFm9svZh8Z1fZQoaAZoCWgPQwjlYaHWNG/4v5SGlFKUaBVLMmgWR0Bxc+gte2NOdX2UKGgGaAloD0MIWwndJXHW9b+UhpRSlGgVSzJoFkdAcXH5eZ5Rj3V9lChoBmgJaA9DCM12hT5Yxva/lIaUUpRoFUsyaBZHQHFwB6a9bot1fZQoaAZoCWgPQwjs2XOZmsT3v5SGlFKUaBVLMmgWR0BxbiCuloDgdX2UKGgGaAloD0MIzCbAsPw5/b+UhpRSlGgVSzJoFkdAcXrzPKMefnV9lChoBmgJaA9DCO+SOCui5vy/lIaUUpRoFUsyaBZHQHF5BPwd8zB1fZQoaAZoCWgPQwiutmJ/2f35v5SGlFKUaBVLMmgWR0BxdxON5t3wdX2UKGgGaAloD0MIQdZTq6/u+7+UhpRSlGgVSzJoFkdAcXUsVLzwt3V9lChoBmgJaA9DCOKPos7cA/y/lIaUUpRoFUsyaBZHQHGCM/lhgE51fZQoaAZoCWgPQwi3ek563xgBwJSGlFKUaBVLMmgWR0BxgEqz7di2dX2UKGgGaAloD0MITvIjfsWa+7+UhpRSlGgVSzJoFkdAcX5eBQN1AHV9lChoBmgJaA9DCPSLEvQXevS/lIaUUpRoFUsyaBZHQHF8fCuU2UB1fZQoaAZoCWgPQwiL/zuiQnX8v5SGlFKUaBVLMmgWR0BxiZLqUu+RdX2UKGgGaAloD0MIUwlP6PWn/b+UhpRSlGgVSzJoFkdAcYem8M/hVHV9lChoBmgJaA9DCFJgAUwZ+Pa/lIaUUpRoFUsyaBZHQHGFtWIXTE11fZQoaAZoCWgPQwgC85ApH4L4v5SGlFKUaBVLMmgWR0Bxg87bL2YfdX2UKGgGaAloD0MIh/iHLT0a9r+UhpRSlGgVSzJoFkdAcZDWnjyWiXV9lChoBmgJaA9DCP3dO2pMSPq/lIaUUpRoFUsyaBZHQHGO6KP4mC11fZQoaAZoCWgPQwhm22lrRDD6v5SGlFKUaBVLMmgWR0BxjPcCYCyRdX2UKGgGaAloD0MIeA5lqIrp/L+UhpRSlGgVSzJoFkdAcYsSro4dZXV9lChoBmgJaA9DCL+bbtkh/ve/lIaUUpRoFUsyaBZHQHGYE74i5d51fZQoaAZoCWgPQwj1Lt6P26/8v5SGlFKUaBVLMmgWR0BxliZ9d/rjdX2UKGgGaAloD0MIGQCquHFL+b+UhpRSlGgVSzJoFkdAcZQ07bL2YnV9lChoBmgJaA9DCI3TEFX4M/y/lIaUUpRoFUsyaBZHQHGSTawljVh1ZS4="
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
+
"_n_updates": 5000,
|
87 |
"n_steps": 5,
|
88 |
"gamma": 0.99,
|
89 |
"gae_lambda": 1.0,
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7a2c34491dbf48639e76b5bbb380d7accc92cda8a7fa3272c4e7ad9d5e361b75
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1dba6fac731e1017b34c6e9b2e73bb571145665bf38eea140a107a0770f64b20
|
3 |
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f1ace5dd430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f1ace5dbd40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000, "_total_timesteps": 1000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679253293597352130, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAY/oEP5ufL70pcsw/Y/oEP5ufL70pcsw/Y/oEP5ufL70pcsw/Y/oEP5ufL70pcsw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7gIFv0tB2r8s17Q/YbKRvrJh4r6F3qy/VZFfP+hoBL6JGK+/kLMfv5ArCL8UrXm/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABj+gQ/m58vvSlyzD/dYg4+dQQwPJcF5j1j+gQ/m58vvSlyzD/dYg4+dQQwPJcF5j1j+gQ/m58vvSlyzD/dYg4+dQQwPJcF5j1j+gQ/m58vvSlyzD/dYg4+dQQwPJcF5j2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.5194456 -0.04287682 1.5972339 ]\n [ 0.5194456 -0.04287682 1.5972339 ]\n [ 0.5194456 -0.04287682 1.5972339 ]\n [ 0.5194456 -0.04287682 1.5972339 ]]", "desired_goal": "[[-0.51957595 -1.7051176 1.4128165 ]\n [-0.28456405 -0.4421516 -1.3505408 ]\n [ 0.87331134 -0.12930644 -1.3679363 ]\n [-0.62383366 -0.5319147 -0.9752972 ]]", "observation": "[[ 0.5194456 -0.04287682 1.5972339 0.13904901 0.01074325 0.11231535]\n [ 0.5194456 -0.04287682 1.5972339 0.13904901 0.01074325 0.11231535]\n [ 0.5194456 -0.04287682 1.5972339 0.13904901 0.01074325 0.11231535]\n [ 0.5194456 -0.04287682 1.5972339 0.13904901 0.01074325 0.11231535]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA2vgKvrFPxD0NAlQ+IpyOva4QfDtL4l0+G4a9vS4LSrzZhKI86/D+vRYRuDs0GfY9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.13571492 0.09585512 0.20703907]\n [-0.06963374 0.00384621 0.21668355]\n [-0.09254094 -0.01233177 0.01983874]\n [-0.12448295 0.00561727 0.12016526]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVnQMAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/RNcrKhRJcCUhpRSlIwBbJRLMowBdJRHP+xpCa7VawF1fZQoaAZoCWgPQwjfawiOy/gowJSGlFKUaBVLMmgWRz/oFPSDyvs7dX2UKGgGaAloD0MIbECEuHK2GcCUhpRSlGgVSzJoFkc/5FYr8R+SbHV9lChoBmgJaA9DCMKKU62FiSzAlIaUUpRoFUsyaBZHP+CcinpB5X51fZQoaAZoCWgPQwiDp5Ar9bwiwJSGlFKUaBVLMmgWRz/69wvQF9rodX2UKGgGaAloD0MIuRgD6zg2McCUhpRSlGgVSzJoFkc/+NJe3QUpNXV9lChoBmgJaA9DCPdXj/tWkzTAlIaUUpRoFUsyaBZHP/cBBRhttQ91fZQoaAZoCWgPQwhjK2haYi0rwJSGlFKUaBVLMmgWRz/1Kd+XqqwRdX2UKGgGaAloD0MIE0VI3c7iM8CUhpRSlGgVSzJoFkdABArMC9ytFXV9lChoBmgJaA9DCGwIjsu4ISrAlIaUUpRoFUsyaBZHQAL4Ny5qdpZ1fZQoaAZoCWgPQwgBwLFnz/U2wJSGlFKUaBVLMmgWR0ACEIJJGvwFdX2UKGgGaAloD0MIlPsdigKtMcCUhpRSlGgVSzJoFkdAASTJyQxN7HV9lChoBmgJaA9DCAZKCiyAKRvAlIaUUpRoFUsyaBZHQAsKMNtqHoJ1fZQoaAZoCWgPQwgv205bIxIswJSGlFKUaBVLMmgWR0AJ+lXRw6yTdX2UKGgGaAloD0MIF9S3zOmiL8CUhpRSlGgVSzJoFkdACQ2DQJHAh3V9lChoBmgJaA9DCM7DCUynZSnAlIaUUpRoFUsyaBZHQAggtOEdvKl1fZQoaAZoCWgPQwiXdJSD2bwpwJSGlFKUaBVLMmgWR0AQ1wrDqGDddX2UKGgGaAloD0MIFto5zQLdKsCUhpRSlGgVSzJoFkdAEE7HAAQxvnV9lChoBmgJaA9DCBvV6UDWuybAlIaUUpRoFUsyaBZHQA+wqAjIJZ51fZQoaAZoCWgPQwhS1m8mpssXwJSGlFKUaBVLMmgWR0AOwvDgqEvkdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f1ace5dd430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f1ace5dbd40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 100000, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679253327866942508, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAATQJLPqXJNb1Zw+g+TQJLPqXJNb1Zw+g+TQJLPqXJNb1Zw+g+TQJLPqXJNb1Zw+g+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAASqOGP0hGPL/Qbbq/pAjRviN3Yj6WiAw/pfHZP+Qeqz6BsYW9ayJLviMfnD91F60+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABNAks+pck1vVnD6D5dH6Q8PPrxuxBMjjxNAks+pck1vVnD6D5dH6Q8PPrxuxBMjjxNAks+pck1vVnD6D5dH6Q8PPrxuxBMjjxNAks+pck1vVnD6D5dH6Q8PPrxuxBMjjyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.19825096 -0.04438176 0.45461538]\n [ 0.19825096 -0.04438176 0.45461538]\n [ 0.19825096 -0.04438176 0.45461538]\n [ 0.19825096 -0.04438176 0.45461538]]", "desired_goal": "[[ 1.0518582 -0.7354474 -1.4564762 ]\n [-0.40826905 0.2211576 0.54895914]\n [ 1.7026869 0.33422005 -0.06527997]\n [-0.19837348 1.2197002 0.3380696 ]]", "observation": "[[ 0.19825096 -0.04438176 0.45461538 0.02003449 -0.00738457 0.01737025]\n [ 0.19825096 -0.04438176 0.45461538 0.02003449 -0.00738457 0.01737025]\n [ 0.19825096 -0.04438176 0.45461538 0.02003449 -0.00738457 0.01737025]\n [ 0.19825096 -0.04438176 0.45461538 0.02003449 -0.00738457 0.01737025]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAFBkAvvXeGD45cII++QeBPZl8571r3WE+39BXvVrYBr7QA4w+d6aRve1Zk70ULpg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.12509567 0.14928801 0.25476244]\n [ 0.06300349 -0.11303062 0.2205712 ]\n [-0.05268943 -0.13168469 0.2734666 ]\n [-0.07111829 -0.07194886 0.29722655]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7fKtD+tN+7+UhpRSlIwBbJRLMowBdJRHQHDLTHXEqDt1fZQoaAZoCWgPQwhNamgDsEH9v5SGlFKUaBVLMmgWR0BwyV6a9bosdX2UKGgGaAloD0MIYDlCBvLMAMCUhpRSlGgVSzJoFkdAcMdtjkMkQnV9lChoBmgJaA9DCAgAjj17bvW/lIaUUpRoFUsyaBZHQHDFiMglnh91fZQoaAZoCWgPQwiSrwRSYlf7v5SGlFKUaBVLMmgWR0Bw1HQXyiEhdX2UKGgGaAloD0MIuTgqN1FL+b+UhpRSlGgVSzJoFkdAcNKJ+UhV2nV9lChoBmgJaA9DCLsru2BwTfe/lIaUUpRoFUsyaBZHQHDQnbM5fdB1fZQoaAZoCWgPQwhdUrXdBF/+v5SGlFKUaBVLMmgWR0Bwzrs8gZCOdX2UKGgGaAloD0MIRRDn4QSm/b+UhpRSlGgVSzJoFkdAcN/l18stkHV9lChoBmgJaA9DCEW5NH7hVfu/lIaUUpRoFUsyaBZHQHDd+0ojOcF1fZQoaAZoCWgPQwj3sBcK2M78v5SGlFKUaBVLMmgWR0Bw3A3xWkrPdX2UKGgGaAloD0MIghq+hXWDAsCUhpRSlGgVSzJoFkdAcNoqC6H0snV9lChoBmgJaA9DCKQYINEEyvu/lIaUUpRoFUsyaBZHQHDq9CRfWtl1fZQoaAZoCWgPQwhQU8vW+qL2v5SGlFKUaBVLMmgWR0Bw6Qq3EyckdX2UKGgGaAloD0MIjX+fceHA/r+UhpRSlGgVSzJoFkdAcOcc2R7qp3V9lChoBmgJaA9DCFA6kWCq2fS/lIaUUpRoFUsyaBZHQHDlO4gA6uJ1fZQoaAZoCWgPQwhkkLsIU9T7v5SGlFKUaBVLMmgWR0Bw9qFfzBhydX2UKGgGaAloD0MI43FRLSLK/b+UhpRSlGgVSzJoFkdAcPS4LThHb3V9lChoBmgJaA9DCCNKe4MvzPi/lIaUUpRoFUsyaBZHQHDyzJZGKAJ1fZQoaAZoCWgPQwio4VtYN973v5SGlFKUaBVLMmgWR0Bw8PKDCgscdX2UKGgGaAloD0MIVOI6xhXX9r+UhpRSlGgVSzJoFkdAcQLK6FuejHV9lChoBmgJaA9DCJ0SEJNw4fu/lIaUUpRoFUsyaBZHQHEA4l6Z6Ut1fZQoaAZoCWgPQwjtYS8UsN36v5SGlFKUaBVLMmgWR0Bw/vVoYekpdX2UKGgGaAloD0MIYhQEj29v+7+UhpRSlGgVSzJoFkdAcP0TsIE8rHV9lChoBmgJaA9DCI1feCXJs/m/lIaUUpRoFUsyaBZHQHEO8EFGG211fZQoaAZoCWgPQwjj/E0oRMD7v5SGlFKUaBVLMmgWR0BxDQaWHDaXdX2UKGgGaAloD0MIk1M7w9TW+r+UhpRSlGgVSzJoFkdAcQsfWMCLdnV9lChoBmgJaA9DCF8oYDsYMfu/lIaUUpRoFUsyaBZHQHEJPkq+ajN1fZQoaAZoCWgPQwj7WSxF8tX4v5SGlFKUaBVLMmgWR0BxGt48lolEdX2UKGgGaAloD0MIttlYiXkW+r+UhpRSlGgVSzJoFkdAcRj6ol2NenV9lChoBmgJaA9DCAUzpmCN8/q/lIaUUpRoFUsyaBZHQHEXDp9qk/N1fZQoaAZoCWgPQwhw7URJSKT/v5SGlFKUaBVLMmgWR0BxFS0LMLWqdX2UKGgGaAloD0MIN1DgnXw6/L+UhpRSlGgVSzJoFkdAcSXJcgQpWnV9lChoBmgJaA9DCIYgByXM9Pi/lIaUUpRoFUsyaBZHQHEj26wt8NR1fZQoaAZoCWgPQwhHAaJgxtQAwJSGlFKUaBVLMmgWR0BxIeqABkqddX2UKGgGaAloD0MIbk26LZEL+7+UhpRSlGgVSzJoFkdAcSACx/ustHV9lChoBmgJaA9DCMBbIEHxI/u/lIaUUpRoFUsyaBZHQHEszFZPl+51fZQoaAZoCWgPQwjqWRDK+3j4v5SGlFKUaBVLMmgWR0BxKt6NVBD5dX2UKGgGaAloD0MIJCnpYWg1/7+UhpRSlGgVSzJoFkdAcSjtapxWDHV9lChoBmgJaA9DCMCSq1j8pgDAlIaUUpRoFUsyaBZHQHEnCXhOxjd1fZQoaAZoCWgPQwiGqphKP2H5v5SGlFKUaBVLMmgWR0BxM/EMspXqdX2UKGgGaAloD0MIjIaMR6mE/r+UhpRSlGgVSzJoFkdAcTICIUJv53V9lChoBmgJaA9DCK3e4XZo+AHAlIaUUpRoFUsyaBZHQHEwEMw1zhh1fZQoaAZoCWgPQwjLorCLokf1v5SGlFKUaBVLMmgWR0BxLikcjqwAdX2UKGgGaAloD0MI+ptQiICD+r+UhpRSlGgVSzJoFkdAcTsEU0vXb3V9lChoBmgJaA9DCAWk/Q+wlva/lIaUUpRoFUsyaBZHQHE5FoL5RCR1fZQoaAZoCWgPQwjEr1jDRe77v5SGlFKUaBVLMmgWR0BxNyetjkMkdX2UKGgGaAloD0MIcy8wKxRp/L+UhpRSlGgVSzJoFkdAcTVA4GUwBnV9lChoBmgJaA9DCCLH1jOE4/a/lIaUUpRoFUsyaBZHQHFCLjghr311fZQoaAZoCWgPQwgJUFPL1rr3v5SGlFKUaBVLMmgWR0BxQECLdepodX2UKGgGaAloD0MILIL/rWRH+b+UhpRSlGgVSzJoFkdAcT5P7el9B3V9lChoBmgJaA9DCNz2Peqvl/q/lIaUUpRoFUsyaBZHQHE8aUeMhox1fZQoaAZoCWgPQwjt9IO6SGH7v5SGlFKUaBVLMmgWR0BxSUtwrDqGdX2UKGgGaAloD0MIm1YKgVwi+r+UhpRSlGgVSzJoFkdAcUddy1eBx3V9lChoBmgJaA9DCNIZGHlZ0/e/lIaUUpRoFUsyaBZHQHFFbCm/Fit1fZQoaAZoCWgPQwiopiTrcHT9v5SGlFKUaBVLMmgWR0BxQ4ZgogFHdX2UKGgGaAloD0MIbxCtFW3O+L+UhpRSlGgVSzJoFkdAcVBJ3PiT+3V9lChoBmgJaA9DCIv/O6JCdfy/lIaUUpRoFUsyaBZHQHFOXQla8pV1fZQoaAZoCWgPQwiV9DC0Orn3v5SGlFKUaBVLMmgWR0BxTGu+yquKdX2UKGgGaAloD0MItrqcEhBT/b+UhpRSlGgVSzJoFkdAcUqFhG6PKnV9lChoBmgJaA9DCKBtNeuML/m/lIaUUpRoFUsyaBZHQHFXfRzBAOd1fZQoaAZoCWgPQwinJVZGI9/5v5SGlFKUaBVLMmgWR0BxVY65oXbedX2UKGgGaAloD0MIQxuADYgQ+L+UhpRSlGgVSzJoFkdAcVOdAxBVuXV9lChoBmgJaA9DCFKazeMwGPq/lIaUUpRoFUsyaBZHQHFRtnscABF1fZQoaAZoCWgPQwjLoNrgRHT3v5SGlFKUaBVLMmgWR0BxXmPKdQO4dX2UKGgGaAloD0MIHThnRGnv/b+UhpRSlGgVSzJoFkdAcVx5cTrVv3V9lChoBmgJaA9DCJZem42V2PW/lIaUUpRoFUsyaBZHQHFaiJwbVBl1fZQoaAZoCWgPQwg2d/S/XMv2v5SGlFKUaBVLMmgWR0BxWKIcinpCdX2UKGgGaAloD0MIdR2qKcn6/r+UhpRSlGgVSzJoFkdAcWWNhmXgL3V9lChoBmgJaA9DCPfKvFXXIfu/lIaUUpRoFUsyaBZHQHFjnrhR64V1fZQoaAZoCWgPQwj/If32dSD5v5SGlFKUaBVLMmgWR0BxYazRhMJydX2UKGgGaAloD0MIPQytTs7Q9b+UhpRSlGgVSzJoFkdAcV/Fz+3pfXV9lChoBmgJaA9DCMtJKH0hpPi/lIaUUpRoFUsyaBZHQHFsvC/Glyl1fZQoaAZoCWgPQwirksg+yPL/v5SGlFKUaBVLMmgWR0Bxas3gk1MudX2UKGgGaAloD0MIXknyXN9H+L+UhpRSlGgVSzJoFkdAcWjeXRgJC3V9lChoBmgJaA9DCG+df7vsV/m/lIaUUpRoFUsyaBZHQHFm9svZh8Z1fZQoaAZoCWgPQwjlYaHWNG/4v5SGlFKUaBVLMmgWR0Bxc+gte2NOdX2UKGgGaAloD0MIWwndJXHW9b+UhpRSlGgVSzJoFkdAcXH5eZ5Rj3V9lChoBmgJaA9DCM12hT5Yxva/lIaUUpRoFUsyaBZHQHFwB6a9bot1fZQoaAZoCWgPQwjs2XOZmsT3v5SGlFKUaBVLMmgWR0BxbiCuloDgdX2UKGgGaAloD0MIzCbAsPw5/b+UhpRSlGgVSzJoFkdAcXrzPKMefnV9lChoBmgJaA9DCO+SOCui5vy/lIaUUpRoFUsyaBZHQHF5BPwd8zB1fZQoaAZoCWgPQwiutmJ/2f35v5SGlFKUaBVLMmgWR0BxdxON5t3wdX2UKGgGaAloD0MIQdZTq6/u+7+UhpRSlGgVSzJoFkdAcXUsVLzwt3V9lChoBmgJaA9DCOKPos7cA/y/lIaUUpRoFUsyaBZHQHGCM/lhgE51fZQoaAZoCWgPQwi3ek563xgBwJSGlFKUaBVLMmgWR0BxgEqz7di2dX2UKGgGaAloD0MITvIjfsWa+7+UhpRSlGgVSzJoFkdAcX5eBQN1AHV9lChoBmgJaA9DCPSLEvQXevS/lIaUUpRoFUsyaBZHQHF8fCuU2UB1fZQoaAZoCWgPQwiL/zuiQnX8v5SGlFKUaBVLMmgWR0BxiZLqUu+RdX2UKGgGaAloD0MIUwlP6PWn/b+UhpRSlGgVSzJoFkdAcYem8M/hVHV9lChoBmgJaA9DCFJgAUwZ+Pa/lIaUUpRoFUsyaBZHQHGFtWIXTE11fZQoaAZoCWgPQwgC85ApH4L4v5SGlFKUaBVLMmgWR0Bxg87bL2YfdX2UKGgGaAloD0MIh/iHLT0a9r+UhpRSlGgVSzJoFkdAcZDWnjyWiXV9lChoBmgJaA9DCP3dO2pMSPq/lIaUUpRoFUsyaBZHQHGO6KP4mC11fZQoaAZoCWgPQwhm22lrRDD6v5SGlFKUaBVLMmgWR0BxjPcCYCyRdX2UKGgGaAloD0MIeA5lqIrp/L+UhpRSlGgVSzJoFkdAcYsSro4dZXV9lChoBmgJaA9DCL+bbtkh/ve/lIaUUpRoFUsyaBZHQHGYE74i5d51fZQoaAZoCWgPQwj1Lt6P26/8v5SGlFKUaBVLMmgWR0BxliZ9d/rjdX2UKGgGaAloD0MIGQCquHFL+b+UhpRSlGgVSzJoFkdAcZQ07bL2YnV9lChoBmgJaA9DCI3TEFX4M/y/lIaUUpRoFUsyaBZHQHGSTawljVh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 5000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -1.5247957343701273, "std_reward": 0.20584892108056285, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-19T19:20:13.191431"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3056
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8738672a899b0abb831f812ab566681b1ef6a108a3092fd7758cede55e1b2107
|
3 |
size 3056
|