Model Card for CodeFuse-CodeLlama-34B-4bits

[中文] [English]

Model Description

CodeFuse-CodeLlama-34B-4bits is the 4-bit quantized version of CodeFuse-CodeLlama-34B, which is a 34B Code-LLM fine-tuned over multiple code tasks(600k instrunctions/answers)on the base model CodeLlama-34b-Python.

After undergoing 4-bit quantization, the CodeFuse-CodeLlama-34B-4bits model can be loaded on either a single A10 (24GB VRAM) or a RTX 4090 (24GB VRAM). Moreover, the quantized model still achives an impressive accuracy of 73.8% on the Humaneval pass@1 metric.


News and Updates

🔥🔥🔥 2023-09-26 We are pleased to announce the release of the 4-bit quantized version of CodeFuse-CodeLlama-34B. Despite the quantization process, the model still achieves a remarkable 73.8% accuracy (greedy decoding) on the HumanEval pass@1 metric.

🔥🔥🔥 2023-09-11 CodeFuse-CodeLlama34B has achieved 74.4% of pass@1 (greedy decoding) on HumanEval, which is SOTA results for openspurced LLMs at present.


Code Community

Homepage: 🏡 https://github.com/codefuse-ai (Please give us your support with a Star🌟 + Fork🚀 + Watch👀)

  • If you wish to fine-tune the model yourself, you can visit ✨MFTCoder✨✨

  • If you wish to deploy the model yourself, you can visit ✨FasterTransformer4CodeFuse✨✨

  • If you wish to see a demo of the model, you can visit ✨CodeFuse Demo✨✨


Performance

Model HumanEval(pass@1) Date
CodeFuse-CodeLlama-34B 74.4% 2023.9
CodeFuse-CodeLlama-34B-4bits 73.8% 2023.9
WizardCoder-Python-34B-V1.0 73.2% 2023.8
GPT-4(zero-shot) 67.0% 2023.3
PanGu-Coder2 15B 61.6% 2023.8
CodeLlama-34b-Python 53.7% 2023.8
CodeLlama-34b 48.8% 2023.8
GPT-3.5(zero-shot) 48.1% 2022.11
OctoCoder 46.2% 2023.8
StarCoder-15B 33.6% 2023.5
LLaMA 2 70B(zero-shot) 29.9% 2023.7

GPU Memory Usage

We measured the GPU memory usage after loading the model, as well as the memory usage when encoding 2048/1024 tokens and generating 1024/2048 tokens. The results are presented in the table below.

Precision Idle Model Encoding 2048 tokens and Generating 1024 tokens Encoding 1024 tokens and Generating 2048 tokens
bfloat16 64.89GB 69.31GB 66.41GB
int4 19.09GB 22.19GB 20.78GB

Requirements

  • python>=3.8
  • pytorch>=2.0.0
  • transformers==4.32.0
  • auto_gptq==0.4.2
  • Sentencepiece
  • CUDA 11.4

Inference String Format

The inference string is a concatenated string formed by combining conversation data (human and bot contents) in the training data format. It is used as input during the inference process. Here is an example format of the concatenated string:

"""
<|role_start|>human<|role_end|>Human 1st round input
<|role_start|>bot<|role_end|>Bot 1st round output</s>
<|role_start|>human<|role_end|>Human 2nd round input
<|role_start|>bot<|role_end|>Bot 2nd round output</s>
...
...
...
<|role_start|>human<|role_end|>Human nth round input
<|role_start|>bot<|role_end|>{Bot output to be genreated}</s>
"""

When applying inference, you always make your input string end with "<|role_start|>bot<|role_end|>" to ask the model generating answers.


Quickstart

 git clone https://huggingface.co/codefuse-ai/CodeFuse-CodeLlama-34B-4bits.git	
pip install -r requirements.txt
import os
import torch
import time
from transformers import AutoTokenizer
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig

os.environ["TOKENIZERS_PARALLELISM"] = "false"

def load_model_tokenizer(model_name_or_local_path):
    """
    Load model and tokenizer based on the given model name or local path of the downloaded model.
    """
    tokenizer = AutoTokenizer.from_pretrained(model_name_or_local_path, 
                                              trust_remote_code=True, 
                                              use_fast=False,
                                              legacy=False)
    tokenizer.padding_side = "left"

    model = AutoGPTQForCausalLM.from_quantized(model_name_or_local_path, 
                                                inject_fused_attention=False,
                                                inject_fused_mlp=False,
                                                use_cuda_fp16=True,
                                                disable_exllama=False,
                                                device_map='auto'   # Support multi-gpus
                                              )
    return model, tokenizer


def inference(model, tokenizer, prompt):
    """
    Uset the given model and tokenizer to generate an answer for the specified prompt.
    """
    st = time.time()
    prompt = prompt if prompt.endswith('\n') else f'{prompt}\n'
    inputs =  f"<|role_start|>human<|role_end|>{prompt}<|role_start|>bot<|role_end|>"

    input_ids = tokenizer.encode(inputs, 
                                  return_tensors="pt", 
                                  padding=True, 
                                  add_special_tokens=False).to("cuda")
    with torch.no_grad():
        generated_ids = model.generate(
            input_ids=input_ids,
            top_p=0.95,
            temperature=0.1,
            do_sample=True,
            max_new_tokens=512,
            eos_token_id=tokenizer.eos_token_id,
            pad_token_id=tokenizer.pad_token_id              
        )
    print(f'generated tokens num is {len(generated_ids[0][input_ids.size(1):])}')
    outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) 
    print(f'generate text is {outputs[0][len(inputs): ]}')
    latency = time.time() - st
    print('latency is {} seconds'.format(latency))

    
if __name__ == "__main__":
    model_name_or_local_path = '<Mole name (i.e. codefuse-ai/CodeFuse-CodeLlama-34B-4bits) or local path of the downloaded model>'
    prompt = 'Please write a QuickSort program in Python'

    model, tokenizer = load_model_tokenizer(model_name_or_local_path)
    inference(model, tokenizer, prompt)

The current inference example code is based on AutoGPTQ. If you want to achieve higher inference speed, it is recommended to combine it with TensorRT-LLM (Early Access).


Consistency Check

Here, SHA256 values are provided for the model-related files for consistency check during the download.

File SHA256
config.json bd1b92f942549f76d7e02e65fd346b39903943912d6d6a2ff8ff345e43e1115b
generation_config.json b625bd13a52d0685313c32919324b9bdc9e75a4f1338ca5c28226d1693e130a3
gptq_model-4bit-64g.bin 79441bad1d5ab852d0238ed7e113b9912f31189cf9181d7119dd297c4beb454a
pytorch_model.bin.index.json 9a714170172282cfbcaa120af13c0df08b06d040ff24dab30229d8a010821d3d
quantize_config.json 3c1744a928e9d6c3f9a2cbb1bb5a89539077e7d456948bf5aee0deed6a7b8028
special_tokens_map.json ff3b4a612c4e447acb02d40071bddd989fe0da87eb5b7fe0dbadfc4f74de7531
tokenizer.json f7b50bcf6d6672eade5e43514d48e9c1e4e63a56aef7b14acdaca94ce93436f7
tokenizer.model 9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
tokenizer_config.json c12441e82f2dce0baff87cf5948e82d6e9b51cc0b5266369c30c319fb771eeb2

Citation

If you find our work useful or helpful for your R&D works, please feel free to cite our paper as below.

@article{mftcoder2023,
      title={MFTCoder: Boosting Code LLMs with Multitask Fine-Tuning}, 
      author={Bingchang Liu and Chaoyu Chen and Cong Liao and Zi Gong and Huan Wang and Zhichao Lei and Ming Liang and Dajun Chen and Min Shen and Hailian Zhou and Hang Yu and Jianguo Li},
      year={2023},
      journal={arXiv preprint arXiv},
      archivePrefix={arXiv},
      eprint={2311.02303}
}

模型简介

CodeFuse-CodeLlama-34B-4bits是CodeFuse-CodeLlama-34B模型的4bits量化版本,后者是通过QLoRA对基座模型CodeLlama-34b-Python进行多代码任务微调而得到的代码大模型,模型输入长度为4K。

经4bits量化后,CodeFuse-CodeLlama-34B-4bits可用单张A10 (24GB显存)或者RTX 4090 (24GB显存)加载,同时,量化后的模型在Humaneval pass@1指标上仍取得了73.8%的表现。


新闻

🔥🔥🔥 2023-09-26 CodeFuse-CodeLlama-34B 4bits量化版本发布,量化后模型在HumanEval pass@1指标为73.8% (贪婪解码)。

🔥🔥🔥 2023-09-11 CodeFuse-CodeLlama-34B发布,HumanEval pass@1指标达到74.4% (贪婪解码), 为当前开源SOTA。


代码社区

大本营: 🏡 https://github.com/codefuse-ai请支持我们的项目Star🌟 + Fork🚀 + Watch👀


评测表现(代码)

模型 HumanEval(pass@1) 日期
CodeFuse-CodeLlama-34B 74.4% 2023.9
CodeFuse-CodeLlama-34B-4bits 73.8% 2023.9
WizardCoder-Python-34B-V1.0 73.2% 2023.8
GPT-4(zero-shot) 67.0% 2023.3
PanGu-Coder2 15B 61.6% 2023.8
CodeLlama-34b-Python 53.7% 2023.8
CodeLlama-34b 48.8% 2023.8
GPT-3.5(zero-shot) 48.1% 2022.11
OctoCoder 46.2% 2023.8
StarCoder-15B 33.6% 2023.5
LLaMA 2 70B(zero-shot) 29.9% 2023.7

显存使用

我们测量了模型加载后占用的显存占用情况,以及输入2048/1024 tokens并输出1024/2048 tokens时的显存使用情况,如下表所示

精度 模型空载 输入2048 tokens + 输出1024 tokens 输入1024 tokens + 输出2048 tokens
bfloat16 64.89GB 69.31GB 66.41GB
int4 19.09GB 22.19GB 20.78GB

依赖要求

  • python>=3.8
  • pytorch>=2.0.0
  • transformers==4.32.0
  • auto_gptq==0.4.2
  • Sentencepiece
  • CUDA 11.4

推理数据格式

推理数据为模型在训练数据格式下拼接的字符串形式,它也是推理时输入prompt拼接的方式:

"""
<|role_start|>human<|role_end|>Human 1st round input
<|role_start|>bot<|role_end|>Bot 1st round output</s>
<|role_start|>human<|role_end|>Human 2nd round input
<|role_start|>bot<|role_end|>Bot 2nd round output</s>
...
...
...
<|end|><|role_start|>human<|role_end|>Human nth round input
<|end|><|role_start|>bot<|role_end|>{Bot output to be genreated}</s>
"""

推理时,请确保拼接的prompt字符串以"<|role_start|>bot<|role_end|>"结尾,引导模型生成回答。


快速使用

 git clone https://huggingface.co/codefuse-ai/CodeFuse-CodeLlama-34B-4bits.git	
pip install -r requirements.txt
import os
import torch
import time
from transformers import AutoTokenizer
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig

os.environ["TOKENIZERS_PARALLELISM"] = "false"

def load_model_tokenizer(model_name_or_local_path):
    """
    Load model and tokenizer based on the given model name or local path of downloaded model.
    """
    tokenizer = AutoTokenizer.from_pretrained(model_name_or_local_path, 
                                              trust_remote_code=True, 
                                              use_fast=False,
                                              legacy=False)
    tokenizer.padding_side = "left"

    model = AutoGPTQForCausalLM.from_quantized(model_name_or_local_path, 
                                                inject_fused_attention=False,
                                                inject_fused_mlp=False,
                                                use_cuda_fp16=True,
                                                disable_exllama=False,
                                                device_map='auto'   # Support multi-gpus
                                              )
    return model, tokenizer


def inference(model, tokenizer, prompt):
    """
    Uset the given model and tokenizer to generate an answer for the speicifed prompt.
    """
    st = time.time()
    prompt = prompt if prompt.endswith('\n') else f'{prompt}\n'
    inputs =  f"<|role_start|>human<|role_end|>{prompt}<|role_start|>bot<|role_end|>"

    input_ids = tokenizer.encode(inputs, 
                                  return_tensors="pt", 
                                  padding=True, 
                                  add_special_tokens=False).to("cuda")
    with torch.no_grad():
        generated_ids = model.generate(
            input_ids=input_ids,
            top_p=0.95,
            temperature=0.1,
            do_sample=True,
            max_new_tokens=512,
            eos_token_id=tokenizer.eos_token_id, 
            pad_token_id=tokenizer.pad_token_id             
        )
    print(f'generated tokens num is {len(generated_ids[0][input_ids.size(1):])}')
    outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) 
    print(f'generate text is {outputs[0][len(inputs): ]}')
    latency = time.time() - st
    print('latency is {} seconds'.format(latency))

    
if __name__ == "__main__":
    model_name_or_local_path = '<模型名字 (即codefuse-ai/CodeFuse-CodeLlama-34B-4bits)或者提前下载到本地的模型路径>'
    prompt = '请用Python实现一个快速排序算法'

    model, tokenizer = load_model_tokenizer(model_name_or_local_path)
    inference(model, tokenizer, prompt)

目前的推理示例代码是基于AutoGPTQ的,如果你想获取更高的推理速度,建议结合使用TensorRT-LLM (Early Access)


一致性校验

这里提供了模型相关文件的SHA256值,用于下载一致性校验。

文件 SHA256
config.json bd1b92f942549f76d7e02e65fd346b39903943912d6d6a2ff8ff345e43e1115b
generation_config.json b625bd13a52d0685313c32919324b9bdc9e75a4f1338ca5c28226d1693e130a3
gptq_model-4bit-64g.bin 79441bad1d5ab852d0238ed7e113b9912f31189cf9181d7119dd297c4beb454a
pytorch_model.bin.index.json 9a714170172282cfbcaa120af13c0df08b06d040ff24dab30229d8a010821d3d
quantize_config.json 3c1744a928e9d6c3f9a2cbb1bb5a89539077e7d456948bf5aee0deed6a7b8028
special_tokens_map.json ff3b4a612c4e447acb02d40071bddd989fe0da87eb5b7fe0dbadfc4f74de7531
tokenizer.json f7b50bcf6d6672eade5e43514d48e9c1e4e63a56aef7b14acdaca94ce93436f7
tokenizer.model 9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
tokenizer_config.json c12441e82f2dce0baff87cf5948e82d6e9b51cc0b5266369c30c319fb771eeb2
Downloads last month
16
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including codefuse-ai/CodeFuse-CodeLlama-34B-4bits