codymd's picture
End of training
67f3fbe verified
metadata
library_name: transformers
license: mit
base_model: xlnet/xlnet-base-cased
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: xlnet-base-cased-grammar-ner
    results: []

xlnet-base-cased-grammar-ner

This model is a fine-tuned version of xlnet/xlnet-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1027
  • Accuracy: 0.9879
  • F1 Macro: 0.7899
  • F1 Micro: 0.9048
  • Precision Macro: 0.8321
  • Precision Micro: 0.9436
  • Recall Macro: 0.7769
  • Recall Micro: 0.8691

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 24
  • eval_batch_size: 24
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 18

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Macro F1 Micro Precision Macro Precision Micro Recall Macro Recall Micro
0.3654 1.0 93 0.2315 0.9329 0.2241 0.4091 0.2338 0.5016 0.2436 0.3454
0.1834 2.0 186 0.1603 0.9627 0.2982 0.6748 0.4007 0.8441 0.2733 0.5621
0.1161 3.0 279 0.1472 0.9649 0.4016 0.7249 0.4585 0.7494 0.3910 0.7020
0.0764 4.0 372 0.1233 0.9739 0.4844 0.7783 0.5824 0.8346 0.4487 0.7291
0.0561 5.0 465 0.1224 0.9738 0.4467 0.7792 0.5923 0.8650 0.4044 0.7088
0.0423 6.0 558 0.1135 0.9799 0.6021 0.8375 0.6885 0.8825 0.5619 0.7968
0.0319 7.0 651 0.0987 0.9820 0.6386 0.8541 0.6928 0.8841 0.6342 0.8262
0.0221 8.0 744 0.1034 0.9836 0.6463 0.8623 0.7605 0.9184 0.6045 0.8126
0.0175 9.0 837 0.0984 0.9852 0.6852 0.8794 0.7154 0.9045 0.6849 0.8555
0.0094 10.0 930 0.0985 0.9865 0.6985 0.8936 0.7434 0.9272 0.6914 0.8623
0.0078 11.0 1023 0.0987 0.9858 0.7314 0.8876 0.7563 0.9119 0.7406 0.8646
0.0056 12.0 1116 0.1051 0.9868 0.7501 0.8923 0.7955 0.9270 0.7410 0.8600
0.0047 13.0 1209 0.1027 0.9866 0.7606 0.8936 0.8116 0.9272 0.7469 0.8623
0.0031 14.0 1302 0.1009 0.9866 0.7762 0.8953 0.8034 0.9233 0.7769 0.8691
0.0027 15.0 1395 0.1008 0.9873 0.7763 0.8995 0.8073 0.9322 0.7769 0.8691
0.002 16.0 1488 0.1034 0.9884 0.7939 0.9067 0.8590 0.9505 0.7591 0.8668
0.0015 17.0 1581 0.1020 0.9881 0.7925 0.9059 0.8362 0.9459 0.7769 0.8691
0.0016 18.0 1674 0.1027 0.9879 0.7899 0.9048 0.8321 0.9436 0.7769 0.8691

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.20.3