|
--- |
|
language: ["ru"] |
|
tags: |
|
- russian |
|
- classification |
|
- toxicity |
|
- multilabel |
|
widget: |
|
- text: "Иди ты нафиг!" |
|
--- |
|
This is the [cointegrated/rubert-tiny](https://huggingface.co/cointegrated/rubert-tiny) model fine-tuned for classification of toxicity and inappropriateness for short informal Russian texts, such as comments in social networks. |
|
|
|
The problem is formulated as multilabel classification with the following classes: |
|
- `non-toxic`: the text does NOT contain insults, obscenities, and threats, in the sense of the [OK ML Cup](https://cups.mail.ru/ru/tasks/1048) competition. |
|
- `insult` |
|
- `obscenity` |
|
- `threat` |
|
- `dangerous`: the text is inappropriate, in the sense of [Babakov et.al.](https://arxiv.org/abs/2103.05345), i.e. it can harm the reputation of the speaker. |
|
|
|
A text can be considered safe if it is BOTH `non-toxic` and NOT `dangerous`. |
|
|
|
## Usage |
|
|
|
The function below estimates the probability that the text is either toxic OR dangerous: |
|
```python |
|
# !pip install transformers sentencepiece --quiet |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
|
|
model_checkpoint = 'cointegrated/rubert-tiny-toxicity' |
|
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) |
|
model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint) |
|
if torch.cuda.is_available(): |
|
model.cuda() |
|
|
|
def text2toxicity(text, aggregate=True): |
|
""" Calculate toxicity of a text (if aggregate=True) or a vector of toxicity aspects (if aggregate=False)""" |
|
with torch.no_grad(): |
|
inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True).to(model.device) |
|
proba = torch.sigmoid(model(**inputs).logits).cpu().numpy() |
|
if isinstance(text, str): |
|
proba = proba[0] |
|
if aggregate: |
|
return 1 - proba.T[0] * (1 - proba.T[-1]) |
|
return proba |
|
|
|
print(text2toxicity('я люблю нигеров', True)) |
|
# 0.9350118728093193 |
|
|
|
print(text2toxicity('я люблю нигеров', False)) |
|
# [0.9715758 0.0180863 0.0045551 0.00189755 0.9331106 ] |
|
|
|
print(text2toxicity(['я люблю нигеров', 'я люблю африканцев'], True)) |
|
# [0.93501186 0.04156357] |
|
|
|
print(text2toxicity(['я люблю нигеров', 'я люблю африканцев'], False)) |
|
# [[9.7157580e-01 1.8086294e-02 4.5550885e-03 1.8975559e-03 9.3311059e-01] |
|
# [9.9979788e-01 1.9048342e-04 1.5297388e-04 1.7452303e-04 4.1369814e-02]] |
|
``` |
|
|
|
## Training |
|
|
|
The model has been trained on the joint dataset of [OK ML Cup](https://cups.mail.ru/ru/tasks/1048) and [Babakov et.al.](https://arxiv.org/abs/2103.05345) with `Adam` optimizer, the learning rate of `1e-5`, and batch size of `64` for `15` epochs. A text was considered inappropriate if its inappropriateness score was higher than 0.8, and appropriate - if it was lower than 0.2. The per-label ROC AUC on the dev set is: |
|
``` |
|
non-toxic : 0.9937 |
|
insult : 0.9912 |
|
obscenity : 0.9881 |
|
threat : 0.9910 |
|
dangerous : 0.8295 |
|
``` |