metadata
license: apache-2.0
IterComp
Official Repository of the paper: IterComp.
News🔥🔥🔥
- Oct.9, 2024. Our checkpoints are publicly available on HuggingFace Repo.
Introduction
IterComp is one of the new State-of-the-Art compositional generation methods. In this repository, we release the model training from SDXL Base 1.0 .
Text-to-Image Usage
from diffusers import DiffusionPipeline
import torch
pipe = DiffusionPipeline.from_pretrained("comin/IterComp", torch_dtype=torch.float16, use_safetensors=True)
pipe.to("cuda")
# if using torch < 2.0
# pipe.enable_xformers_memory_efficient_attention()
prompt = "An astronaut riding a green horse"
image = pipe(prompt=prompt).images[0]
image.save("output.png")
IterComp can serve as a powerful backbone for various compositional generation methods, such as RPG and Omost. We recommend integrating IterComp into these approaches to achieve more advanced compositional generation results.
Citation
@article{zhang2024itercomp,
title={IterComp: Iterative Composition-Aware Feedback Learning from Model Gallery for Text-to-Image Generation},
author={Zhang, Xinchen and Yang, Ling and Li, Guohao and Cai, Yaqi and Xie, Jiake and Tang, Yong and Yang, Yujiu and Wang, Mengdi and Cui, Bin},
journal={arXiv preprint arXiv:2410.07171},
year={2024}
}