|
import cv2 |
|
import math |
|
import numpy as np |
|
import random |
|
|
|
|
|
|
|
|
|
|
|
|
|
def sigma_matrix2(sig_x, sig_y, theta): |
|
"""Calculate the rotated sigma matrix (two dimensional matrix). |
|
|
|
Args: |
|
sig_x (float): |
|
sig_y (float): |
|
theta (float): Radian measurement. |
|
|
|
Returns: |
|
ndarray: Rotated sigma matrix. |
|
""" |
|
D = np.array([[sig_x**2, 0], [0, sig_y**2]]) |
|
U = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]) |
|
return np.dot(U, np.dot(D, U.T)) |
|
|
|
|
|
def mesh_grid(kernel_size): |
|
"""Generate the mesh grid, centering at zero. |
|
|
|
Args: |
|
kernel_size (int): |
|
|
|
Returns: |
|
xy (ndarray): with the shape (kernel_size, kernel_size, 2) |
|
xx (ndarray): with the shape (kernel_size, kernel_size) |
|
yy (ndarray): with the shape (kernel_size, kernel_size) |
|
""" |
|
ax = np.arange(-kernel_size // 2 + 1., kernel_size // 2 + 1.) |
|
xx, yy = np.meshgrid(ax, ax) |
|
xy = np.hstack((xx.reshape((kernel_size * kernel_size, 1)), yy.reshape(kernel_size * kernel_size, |
|
1))).reshape(kernel_size, kernel_size, 2) |
|
return xy, xx, yy |
|
|
|
|
|
def pdf2(sigma_matrix, grid): |
|
"""Calculate PDF of the bivariate Gaussian distribution. |
|
|
|
Args: |
|
sigma_matrix (ndarray): with the shape (2, 2) |
|
grid (ndarray): generated by :func:`mesh_grid`, |
|
with the shape (K, K, 2), K is the kernel size. |
|
|
|
Returns: |
|
kernel (ndarrray): un-normalized kernel. |
|
""" |
|
inverse_sigma = np.linalg.inv(sigma_matrix) |
|
kernel = np.exp(-0.5 * np.sum(np.dot(grid, inverse_sigma) * grid, 2)) |
|
return kernel |
|
|
|
|
|
def mass_center_shift(kernel_size, kernel): |
|
"""Calculate the shift of the mass center of a kenrel. |
|
|
|
Args: |
|
kernel_size (int): |
|
kernel (ndarray): normalized kernel. |
|
|
|
Returns: |
|
delta_h (float): |
|
delta_w (float): |
|
""" |
|
ax = np.arange(-kernel_size // 2 + 1., kernel_size // 2 + 1.) |
|
col_sum, row_sum = np.sum(kernel, axis=0), np.sum(kernel, axis=1) |
|
delta_h = np.dot(row_sum, ax) |
|
delta_w = np.dot(col_sum, ax) |
|
return delta_h, delta_w |
|
|
|
|
|
def bivariate_anisotropic_Gaussian(kernel_size, sig_x, sig_y, theta, grid=None): |
|
"""Generate a bivariate anisotropic Gaussian kernel. |
|
|
|
Args: |
|
kernel_size (int): |
|
sig_x (float): |
|
sig_y (float): |
|
theta (float): Radian measurement. |
|
grid (ndarray, optional): generated by :func:`mesh_grid`, |
|
with the shape (K, K, 2), K is the kernel size. Default: None |
|
|
|
Returns: |
|
kernel (ndarray): normalized kernel. |
|
""" |
|
if grid is None: |
|
grid, _, _ = mesh_grid(kernel_size) |
|
sigma_matrix = sigma_matrix2(sig_x, sig_y, theta) |
|
kernel = pdf2(sigma_matrix, grid) |
|
kernel = kernel / np.sum(kernel) |
|
return kernel |
|
|
|
|
|
def bivariate_isotropic_Gaussian(kernel_size, sig, grid=None): |
|
"""Generate a bivariate isotropic Gaussian kernel. |
|
|
|
Args: |
|
kernel_size (int): |
|
sig (float): |
|
grid (ndarray, optional): generated by :func:`mesh_grid`, |
|
with the shape (K, K, 2), K is the kernel size. Default: None |
|
|
|
Returns: |
|
kernel (ndarray): normalized kernel. |
|
""" |
|
if grid is None: |
|
grid, _, _ = mesh_grid(kernel_size) |
|
sigma_matrix = np.array([[sig**2, 0], [0, sig**2]]) |
|
kernel = pdf2(sigma_matrix, grid) |
|
kernel = kernel / np.sum(kernel) |
|
return kernel |
|
|
|
|
|
def random_bivariate_anisotropic_Gaussian(kernel_size, |
|
sigma_x_range, |
|
sigma_y_range, |
|
rotation_range, |
|
noise_range=None, |
|
strict=False): |
|
"""Randomly generate bivariate anisotropic Gaussian kernels. |
|
|
|
Args: |
|
kernel_size (int): |
|
sigma_x_range (tuple): [0.6, 5] |
|
sigma_y_range (tuple): [0.6, 5] |
|
rotation range (tuple): [-math.pi, math.pi] |
|
noise_range(tuple, optional): multiplicative kernel noise, |
|
[0.75, 1.25]. Default: None |
|
|
|
Returns: |
|
kernel (ndarray): |
|
""" |
|
assert kernel_size % 2 == 1, 'Kernel size must be an odd number.' |
|
assert sigma_x_range[0] < sigma_x_range[1], 'Wrong sigma_x_range.' |
|
assert sigma_y_range[0] < sigma_y_range[1], 'Wrong sigma_y_range.' |
|
assert rotation_range[0] < rotation_range[1], 'Wrong rotation_range.' |
|
sigma_x = np.random.uniform(sigma_x_range[0], sigma_x_range[1]) |
|
sigma_y = np.random.uniform(sigma_y_range[0], sigma_y_range[1]) |
|
if strict: |
|
sigma_max = np.max([sigma_x, sigma_y]) |
|
sigma_min = np.min([sigma_x, sigma_y]) |
|
sigma_x, sigma_y = sigma_max, sigma_min |
|
rotation = np.random.uniform(rotation_range[0], rotation_range[1]) |
|
|
|
kernel = bivariate_anisotropic_Gaussian(kernel_size, sigma_x, sigma_y, rotation) |
|
|
|
|
|
if noise_range is not None: |
|
assert noise_range[0] < noise_range[1], 'Wrong noise range.' |
|
noise = np.random.uniform(noise_range[0], noise_range[1], size=kernel.shape) |
|
kernel = kernel * noise |
|
kernel = kernel / np.sum(kernel) |
|
if strict: |
|
return kernel, sigma_x, sigma_y, rotation |
|
else: |
|
return kernel |
|
|
|
|
|
def random_bivariate_isotropic_Gaussian(kernel_size, sigma_range, noise_range=None, strict=False): |
|
"""Randomly generate bivariate isotropic Gaussian kernels. |
|
|
|
Args: |
|
kernel_size (int): |
|
sigma_range (tuple): [0.6, 5] |
|
noise_range(tuple, optional): multiplicative kernel noise, |
|
[0.75, 1.25]. Default: None |
|
|
|
Returns: |
|
kernel (ndarray): |
|
""" |
|
assert kernel_size % 2 == 1, 'Kernel size must be an odd number.' |
|
assert sigma_range[0] < sigma_range[1], 'Wrong sigma_x_range.' |
|
sigma = np.random.uniform(sigma_range[0], sigma_range[1]) |
|
|
|
kernel = bivariate_isotropic_Gaussian(kernel_size, sigma) |
|
|
|
|
|
if noise_range is not None: |
|
assert noise_range[0] < noise_range[1], 'Wrong noise range.' |
|
noise = np.random.uniform(noise_range[0], noise_range[1], size=kernel.shape) |
|
kernel = kernel * noise |
|
kernel = kernel / np.sum(kernel) |
|
if strict: |
|
return kernel, sigma |
|
else: |
|
return kernel |
|
|
|
|
|
def random_mixed_kernels(kernel_list, |
|
kernel_prob, |
|
kernel_size=21, |
|
sigma_x_range=[0.6, 5], |
|
sigma_y_range=[0.6, 5], |
|
rotation_range=[-math.pi, math.pi], |
|
beta_range=[0.5, 8], |
|
noise_range=None): |
|
"""Randomly generate mixed kernels. |
|
|
|
Args: |
|
kernel_list (tuple): a list name of kenrel types, |
|
support ['iso', 'aniso'] |
|
kernel_prob (tuple): corresponding kernel probability for each |
|
kernel type |
|
kernel_size (int): |
|
sigma_x_range (tuple): [0.6, 5] |
|
sigma_y_range (tuple): [0.6, 5] |
|
rotation range (tuple): [-math.pi, math.pi] |
|
beta_range (tuple): [0.5, 8] |
|
noise_range(tuple, optional): multiplicative kernel noise, |
|
[0.75, 1.25]. Default: None |
|
|
|
Returns: |
|
kernel (ndarray): |
|
""" |
|
kernel_type = random.choices(kernel_list, kernel_prob)[0] |
|
if kernel_type == 'iso': |
|
kernel = random_bivariate_isotropic_Gaussian(kernel_size, sigma_x_range, noise_range=noise_range) |
|
elif kernel_type == 'aniso': |
|
kernel = random_bivariate_anisotropic_Gaussian( |
|
kernel_size, sigma_x_range, sigma_y_range, rotation_range, noise_range=noise_range) |
|
|
|
|
|
if noise_range is not None: |
|
assert noise_range[0] < noise_range[1], 'Wrong noise range.' |
|
noise = np.random.uniform(noise_range[0], noise_range[1], size=kernel.shape) |
|
kernel = kernel * noise |
|
kernel = kernel / np.sum(kernel) |
|
return kernel |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def generate_gaussian_noise(img, sigma=10, gray_noise=False): |
|
"""Generate Gaussian noise. |
|
|
|
Args: |
|
img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32. |
|
sigma (float): Noise scale (measured in range 255). Default: 10. |
|
|
|
Returns: |
|
(Numpy array): Returned noisy image, shape (h, w, c), range[0, 1], |
|
float32. |
|
""" |
|
noise = np.float32(np.random.randn(*(img.shape))) * sigma / 255. |
|
if gray_noise: |
|
noise = np.float32(np.random.randn(*(img.shape[0:2]))) * sigma / 255. |
|
noise = np.expand_dims(noise, axis=2).repeat(3, axis=2) |
|
else: |
|
noise = np.float32(np.random.randn(*(img.shape))) * sigma / 255. |
|
return noise |
|
|
|
|
|
def add_gaussian_noise(img, sigma=10, clip=True, rounds=False, gray_noise=False): |
|
"""Add Gaussian noise. |
|
|
|
Args: |
|
img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32. |
|
sigma (float): Noise scale (measured in range 255). Default: 10. |
|
|
|
Returns: |
|
(Numpy array): Returned noisy image, shape (h, w, c), range[0, 1], |
|
float32. |
|
""" |
|
noise = generate_gaussian_noise(img, sigma, gray_noise) |
|
out = img + noise |
|
if clip and rounds: |
|
out = np.clip((out * 255.0).round(), 0, 255) / 255. |
|
elif clip: |
|
out = np.clip(out, 0, 1) |
|
elif rounds: |
|
out = (out * 255.0).round() / 255. |
|
return out |
|
|
|
|
|
|
|
def random_generate_gaussian_noise(img, sigma_range=(0, 10), gray_prob=0): |
|
sigma = np.random.uniform(sigma_range[0], sigma_range[1]) |
|
if np.random.uniform() < gray_prob: |
|
gray_noise = True |
|
else: |
|
gray_noise = False |
|
return generate_gaussian_noise(img, sigma, gray_noise) |
|
|
|
|
|
def random_add_gaussian_noise(img, sigma_range=(0, 1.0), gray_prob=0, clip=True, rounds=False): |
|
noise = random_generate_gaussian_noise(img, sigma_range, gray_prob) |
|
out = img + noise |
|
if clip and rounds: |
|
out = np.clip((out * 255.0).round(), 0, 255) / 255. |
|
elif clip: |
|
out = np.clip(out, 0, 1) |
|
elif rounds: |
|
out = (out * 255.0).round() / 255. |
|
return out |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def add_jpg_compression(img, quality=90): |
|
"""Add JPG compression artifacts. |
|
|
|
Args: |
|
img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32. |
|
quality (float): JPG compression quality. 0 for lowest quality, 100 for |
|
best quality. Default: 90. |
|
|
|
Returns: |
|
(Numpy array): Returned image after JPG, shape (h, w, c), range[0, 1], |
|
float32. |
|
""" |
|
img = np.clip(img, 0, 1) |
|
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), quality] |
|
_, encimg = cv2.imencode('.jpg', img * 255., encode_param) |
|
img = np.float32(cv2.imdecode(encimg, 1)) / 255. |
|
return img |
|
|
|
|
|
def random_add_jpg_compression(img, quality_range=(90, 100)): |
|
"""Randomly add JPG compression artifacts. |
|
|
|
Args: |
|
img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32. |
|
quality_range (tuple[float] | list[float]): JPG compression quality |
|
range. 0 for lowest quality, 100 for best quality. |
|
Default: (90, 100). |
|
|
|
Returns: |
|
(Numpy array): Returned image after JPG, shape (h, w, c), range[0, 1], |
|
float32. |
|
""" |
|
quality = np.random.uniform(quality_range[0], quality_range[1]) |
|
return add_jpg_compression(img, quality) |
|
|