File size: 7,150 Bytes
c53b4c9
 
 
0c6089d
 
 
c53b4c9
 
 
0c6089d
c53b4c9
f907307
439702c
 
 
0c6089d
439702c
c53b4c9
6e9c222
 
0c6089d
 
c53b4c9
0c6089d
 
 
6e9c222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c53b4c9
0c6089d
439702c
0c6089d
439702c
 
 
e1bad10
 
 
0c6089d
ad6ba90
e1bad10
 
a2b5db8
0c6089d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
439702c
 
0c6089d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38832ec
 
439702c
38832ec
0c6089d
 
 
439702c
0c6089d
439702c
0c6089d
439702c
0c6089d
439702c
38832ec
e1bad10
439702c
38832ec
439702c
e1bad10
 
38832ec
 
 
 
e1bad10
 
38832ec
 
e1bad10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c6089d
 
439702c
0c6089d
439702c
0c6089d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
---
language:
- cs
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
- robust-speech-event
- xlsr-fine-tuning-week
datasets:
- mozilla-foundation/common_voice_8_0
- ovm
- pscr
- vystadial2016
model-index:
- name: Czech comodoro Wav2Vec2 XLSR 300M 250h data
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 8
      type: mozilla-foundation/common_voice_8_0
      args: cs
    metrics:
    - name: Test WER
      type: wer
      value: 7.3
    - name: Test CER
      type: cer
      value: 2.1
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Dev Data
      type: speech-recognition-community-v2/dev_data
      args: cs
    metrics:
    - name: Test WER
      type: wer
      value: 43.44
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Test Data
      type: speech-recognition-community-v2/eval_data
      args: cs
    metrics:
    - name: Test WER
      type: wer
      value: 38.5
---

# Czech wav2vec2-xls-r-300m-cs-250

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice 8.0 dataset as well as other datasets listed below.

It achieves the following results on the evaluation set:
- Loss: 0.1271
- Wer: 0.1475
- Cer: 0.0329

The `eval.py` script results using a LM are:
- WER: 0.07274312090176113
- CER: 0.021207369275558875

## Model description

Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Czech using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset.
When using this model, make sure that your speech input is sampled at 16kHz.


The model can be used directly (without a language model) as follows:

```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

test_dataset = load_dataset("mozilla-foundation/common_voice_8_0", "cs", split="test[:2%]")

processor = Wav2Vec2Processor.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs-250")
model = Wav2Vec2ForCTC.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs-250")

resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
	speech_array, sampling_rate = torchaudio.load(batch["path"])
	batch["speech"] = resampler(speech_array).squeeze().numpy()
	return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
	logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset[:2]["sentence"])
```

## Evaluation

The model can be evaluated using the attached `eval.py` script:
```
python eval.py --model_id comodoro/wav2vec2-xls-r-300m-cs-250 --dataset mozilla-foundation/common-voice_8_0 --split test --config cs
```

## Training and evaluation data

The Common Voice 8.0 `train` and `validation` datasets were used for training, as well as the following datasets:

- Šmídl, Luboš and Pražák, Aleš, 2013, OVM – Otázky Václava Moravce, LINDAT/CLARIAH-CZ digital library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University, http://hdl.handle.net/11858/00-097C-0000-000D-EC98-3.

- Pražák, Aleš and Šmídl, Luboš, 2012, Czech Parliament Meetings, LINDAT/CLARIAH-CZ digital library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University, http://hdl.handle.net/11858/00-097C-0000-0005-CF9C-4.

- Plátek, Ondřej; Dušek, Ondřej and Jurčíček, Filip, 2016, Vystadial 2016 – Czech data, LINDAT/CLARIAH-CZ digital library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University, http://hdl.handle.net/11234/1-1740.


### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 800
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
| 3.4203        | 0.16  | 800   | 3.3148          | 1.0    | 1.0    |
| 2.8151        | 0.32  | 1600  | 0.8508          | 0.8938 | 0.2345 |
| 0.9411        | 0.48  | 2400  | 0.3335          | 0.3723 | 0.0847 |
| 0.7408        | 0.64  | 3200  | 0.2573          | 0.2840 | 0.0642 |
| 0.6516        | 0.8   | 4000  | 0.2365          | 0.2581 | 0.0595 |
| 0.6242        | 0.96  | 4800  | 0.2039          | 0.2433 | 0.0541 |
| 0.5754        | 1.12  | 5600  | 0.1832          | 0.2156 | 0.0482 |
| 0.5626        | 1.28  | 6400  | 0.1827          | 0.2091 | 0.0463 |
| 0.5342        | 1.44  | 7200  | 0.1744          | 0.2033 | 0.0468 |
| 0.4965        | 1.6   | 8000  | 0.1705          | 0.1963 | 0.0444 |
| 0.5047        | 1.76  | 8800  | 0.1604          | 0.1889 | 0.0422 |
| 0.4814        | 1.92  | 9600  | 0.1604          | 0.1827 | 0.0411 |
| 0.4471        | 2.09  | 10400 | 0.1566          | 0.1822 | 0.0406 |
| 0.4509        | 2.25  | 11200 | 0.1619          | 0.1853 | 0.0432 |
| 0.4415        | 2.41  | 12000 | 0.1513          | 0.1764 | 0.0397 |
| 0.4313        | 2.57  | 12800 | 0.1515          | 0.1739 | 0.0392 |
| 0.4163        | 2.73  | 13600 | 0.1445          | 0.1695 | 0.0377 |
| 0.4142        | 2.89  | 14400 | 0.1478          | 0.1699 | 0.0385 |
| 0.4184        | 3.05  | 15200 | 0.1430          | 0.1669 | 0.0376 |
| 0.3886        | 3.21  | 16000 | 0.1433          | 0.1644 | 0.0374 |
| 0.3795        | 3.37  | 16800 | 0.1426          | 0.1648 | 0.0373 |
| 0.3859        | 3.53  | 17600 | 0.1357          | 0.1604 | 0.0361 |
| 0.3762        | 3.69  | 18400 | 0.1344          | 0.1558 | 0.0349 |
| 0.384         | 3.85  | 19200 | 0.1379          | 0.1576 | 0.0359 |
| 0.3762        | 4.01  | 20000 | 0.1344          | 0.1539 | 0.0346 |
| 0.3559        | 4.17  | 20800 | 0.1339          | 0.1525 | 0.0351 |
| 0.3683        | 4.33  | 21600 | 0.1315          | 0.1518 | 0.0342 |
| 0.3572        | 4.49  | 22400 | 0.1307          | 0.1507 | 0.0342 |
| 0.3494        | 4.65  | 23200 | 0.1294          | 0.1491 | 0.0335 |
| 0.3476        | 4.81  | 24000 | 0.1287          | 0.1491 | 0.0336 |
| 0.3475        | 4.97  | 24800 | 0.1271          | 0.1475 | 0.0329 |

### Framework versions

- Transformers 4.16.2
- Pytorch 1.10.1+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0