comodoro's picture
Fix yaml metadata
30c5919
|
raw
history blame
4.67 kB

language: cs datasets:

  • mozilla-foundation/common_voice_8_0 metrics:
  • wer tags:
  • generated_from_trainer
  • audio
  • automatic-speech-recognition
  • speech
  • xlsr-fine-tuning-week license: apache-2.0 model-index:
  • name: Czech comodoro Wav2Vec2 XLSR 300M CV8
  • results: task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 cs type: mozilla-foundation/common_voice_8_0 args: cs metrics: type: wer value: 0.47455377483706096

wav2vec2-xls-r-300m-cs-cv8

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice 8.0 dataset. It achieves the following results on the evaluation set:

  • WER: 0.47455377483706096
  • CER: 0.10877155235645618

Model description

Fine-tuned facebook/wav2vec2-large-xlsr-53 on Czech using the Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz.

The model can be used directly (without a language model) as follows:

import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

test_dataset = load_dataset("mozilla-foundation/common_voice_8_0", "cs", split="test[:2%]")

processor = Wav2Vec2Processor.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs-cv8")
model = Wav2Vec2ForCTC.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs-cv8")

resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset[:2]["sentence"])

Evaluation

The model can be evaluated using the attached eval.py script.

Training and evaluation data

The Common Voice 8.0 train and validation datasets were used for training

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 20
  • total_train_batch_size: 640
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 150
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
7.2926 8.06 250 3.8497 1.0 1.0
3.417 16.13 500 3.2852 1.0 0.9857
2.0264 24.19 750 0.7099 0.7342 0.1768
0.4018 32.25 1000 0.6188 0.6415 0.1551
0.2444 40.32 1250 0.6632 0.6362 0.1600
0.1882 48.38 1500 0.6070 0.5783 0.1388
0.153 56.44 1750 0.6425 0.5720 0.1377
0.1214 64.51 2000 0.6363 0.5546 0.1337
0.1011 72.57 2250 0.6310 0.5222 0.1224
0.0879 80.63 2500 0.6353 0.5258 0.1253
0.0782 88.7 2750 0.6078 0.4904 0.1127
0.0709 96.76 3000 0.6465 0.4960 0.1154
0.0661 104.82 3250 0.6622 0.4945 0.1166
0.0616 112.89 3500 0.6440 0.4786 0.1104
0.0579 120.95 3750 0.6815 0.4887 0.1144
0.0549 129.03 4000 0.6603 0.4780 0.1105
0.0527 137.09 4250 0.6652 0.4749 0.1090
0.0506 145.16 4500 0.6958 0.4846 0.1133

Framework versions

  • Transformers 4.16.0.dev0
  • Pytorch 1.10.1+cu102
  • Datasets 1.17.1.dev0
  • Tokenizers 0.11.0