wav2vec2-xls-r-300m-pl-cv8
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice 8.0 dataset. It achieves the following results on the evaluation set while training:
- Loss: 0.1716
- Wer: 0.1697
- Cer: 0.0385
The eval.py
script results are:
WER: 0.16970531733661967
CER: 0.03839135416519316
Model description
Fine-tuned facebook/wav2vec2-large-xlsr-53 on Polish using the Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz.
The model can be used directly (without a language model) as follows:
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("mozilla-foundation/common_voice_8_0", "pl", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("comodoro/wav2vec2-xls-r-300m-pl-cv8")
model = Wav2Vec2ForCTC.from_pretrained("comodoro/wav2vec2-xls-r-300m-pl-cv8")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset[:2]["sentence"])
Evaluation
The model can be evaluated using the attached eval.py
script:
python eval.py --model_id comodoro/wav2vec2-xls-r-300m-pl-cv8 --dataset mozilla-foundation/common-voice_8_0 --split test --config pl
Training and evaluation data
The Common Voice 8.0 train
and validation
datasets were used for training
Training procedure
Training hyperparameters
The following hyperparameters were used:
- learning_rate: 1e-4
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 1
- total_train_batch_size: 640
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 150
- mixed_precision_training: Native AMP
The training was interrupted after 3250 steps.
Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0
- Downloads last month
- 8
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Dataset used to train comodoro/wav2vec2-xls-r-300m-pl-cv8
Evaluation results
- Test WER on Common Voice 8self-reported17.000
- Test CER on Common Voice 8self-reported3.800
- Test WER on Robust Speech Event - Dev Dataself-reported38.970
- Test WER on Robust Speech Event - Test Dataself-reported46.050