cor-c's picture
Training in progress epoch 7
1758f24
|
raw
history blame
2.99 kB
metadata
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
  - generated_from_keras_callback
model-index:
  - name: cor-c/layoutlm-cord-tf-colab
    results: []

cor-c/layoutlm-cord-tf-colab

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0426
  • Validation Loss: 0.1530
  • Train Overall Precision: 0.9498
  • Train Overall Recall: 0.9642
  • Train Overall F1: 0.9569
  • Train Overall Accuracy: 0.9669
  • Epoch: 7

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'inner_optimizer': {'module': 'transformers.optimization_tf', 'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': 2.9999999242136255e-05, 'decay': 0.0, 'beta_1': 0.8999999761581421, 'beta_2': 0.9990000128746033, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}, 'registered_name': 'AdamWeightDecay'}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
  • training_precision: mixed_float16

Training results

Train Loss Validation Loss Train Overall Precision Train Overall Recall Train Overall F1 Train Overall Accuracy Epoch
1.3249 0.5218 0.8344 0.8318 0.8331 0.8744 0
0.4002 0.2680 0.9113 0.9148 0.9130 0.9334 1
0.2153 0.2180 0.9062 0.9193 0.9127 0.9448 2
0.1483 0.1840 0.9430 0.9437 0.9433 0.9610 3
0.0940 0.1687 0.9383 0.9482 0.9432 0.9614 4
0.0740 0.1539 0.9463 0.9528 0.9496 0.9665 5
0.0600 0.1795 0.9355 0.9498 0.9426 0.9584 6
0.0426 0.1530 0.9498 0.9642 0.9569 0.9669 7

Framework versions

  • Transformers 4.41.2
  • TensorFlow 2.15.0
  • Datasets 2.20.0
  • Tokenizers 0.19.1