|
--- |
|
license: cc-by-nc-sa-4.0 |
|
base_model: microsoft/layoutlmv3-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- funsd-layoutlmv3 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: test |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: funsd-layoutlmv3 |
|
type: funsd-layoutlmv3 |
|
config: funsd |
|
split: test |
|
args: funsd |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.8808265257087938 |
|
- name: Recall |
|
type: recall |
|
value: 0.910581222056632 |
|
- name: F1 |
|
type: f1 |
|
value: 0.895456765999023 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8507072387970998 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# test |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the funsd-layoutlmv3 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5799 |
|
- Precision: 0.8808 |
|
- Recall: 0.9106 |
|
- F1: 0.8955 |
|
- Accuracy: 0.8507 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 1000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.3333 | 100 | 0.6686 | 0.7452 | 0.8251 | 0.7831 | 0.7535 | |
|
| No log | 2.6667 | 200 | 0.4724 | 0.8064 | 0.8713 | 0.8376 | 0.8389 | |
|
| No log | 4.0 | 300 | 0.4922 | 0.8612 | 0.8942 | 0.8774 | 0.8481 | |
|
| No log | 5.3333 | 400 | 0.4632 | 0.8587 | 0.8997 | 0.8787 | 0.8521 | |
|
| 0.544 | 6.6667 | 500 | 0.4850 | 0.8632 | 0.9031 | 0.8827 | 0.8474 | |
|
| 0.544 | 8.0 | 600 | 0.5024 | 0.8744 | 0.8992 | 0.8866 | 0.8451 | |
|
| 0.544 | 9.3333 | 700 | 0.5394 | 0.8768 | 0.9155 | 0.8957 | 0.8565 | |
|
| 0.544 | 10.6667 | 800 | 0.5647 | 0.8800 | 0.9146 | 0.8970 | 0.8550 | |
|
| 0.544 | 12.0 | 900 | 0.5798 | 0.8847 | 0.9106 | 0.8974 | 0.8545 | |
|
| 0.1288 | 13.3333 | 1000 | 0.5799 | 0.8808 | 0.9106 | 0.8955 | 0.8507 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.0.dev0 |
|
- Pytorch 2.1.1+cu118 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.19.1 |
|
|