test_model_7

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8939
  • F1 Macro: 0.0651
  • F1 Micro: 0.2045
  • F1 Weighted: 0.0913
  • Precision Macro: 0.0760
  • Precision Micro: 0.2045
  • Precision Weighted: 0.1037
  • Recall Macro: 0.1437
  • Recall Micro: 0.2045
  • Recall Weighted: 0.2045
  • Accuracy: 0.2045

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss F1 Macro F1 Micro F1 Weighted Precision Macro Precision Micro Precision Weighted Recall Macro Recall Micro Recall Weighted Accuracy
No log 0.8 3 1.9112 0.0464 0.1894 0.0664 0.0281 0.1894 0.0403 0.1323 0.1894 0.1894 0.1894
No log 1.8 6 1.8938 0.0654 0.2045 0.0917 0.0762 0.2045 0.1040 0.1437 0.2045 0.2045 0.2045

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
7
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for corranm/test_model_7

Finetuned
(1855)
this model