test_model_88

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the corranm/first_vote_100_per_new2 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8934
  • F1 Macro: 0.0606
  • F1 Micro: 0.1591
  • F1 Weighted: 0.0846
  • Precision Macro: 0.0421
  • Precision Micro: 0.1591
  • Precision Weighted: 0.0586
  • Recall Macro: 0.1132
  • Recall Micro: 0.1591
  • Recall Weighted: 0.1591
  • Accuracy: 0.1591

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss F1 Macro F1 Micro F1 Weighted Precision Macro Precision Micro Precision Weighted Recall Macro Recall Micro Recall Weighted Accuracy
1.9682 0.8 3 1.9070 0.0599 0.2121 0.0848 0.0661 0.2121 0.0908 0.1486 0.2121 0.2121 0.2121
1.8993 1.8 6 1.8860 0.0902 0.2197 0.1243 0.0630 0.2197 0.0867 0.1594 0.2197 0.2197 0.2197
2.3539 2.8 9 1.8915 0.0637 0.1591 0.0887 0.0443 0.1591 0.0616 0.1141 0.1591 0.1591 0.1591

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
0
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for corranm/test_model_88

Finetuned
(1837)
this model