test_model_94
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the corranm/first_vote_100_per_new2 dataset. It achieves the following results on the evaluation set:
- Loss: 1.8933
- F1 Macro: 0.0863
- F1 Micro: 0.2197
- F1 Weighted: 0.1195
- Precision Macro: 0.0630
- Precision Micro: 0.2197
- Precision Weighted: 0.0868
- Recall Macro: 0.1568
- Recall Micro: 0.2197
- Recall Weighted: 0.2197
- Accuracy: 0.2197
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | F1 Weighted | Precision Macro | Precision Micro | Precision Weighted | Recall Macro | Recall Micro | Recall Weighted | Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.9541 | 0.8 | 3 | 1.9150 | 0.0426 | 0.1591 | 0.0609 | 0.0263 | 0.1591 | 0.0377 | 0.1111 | 0.1591 | 0.1591 | 0.1591 |
1.9037 | 1.8 | 6 | 1.8975 | 0.0848 | 0.2121 | 0.1175 | 0.0601 | 0.2121 | 0.0831 | 0.1520 | 0.2121 | 0.2121 | 0.2121 |
Framework versions
- Transformers 4.48.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for corranm/test_model_94
Base model
google/vit-base-patch16-224-in21k