metadata
datasets: wikitext
license: other
license_link: https://llama.meta.com/llama3/license/
This is a quantized model of Meta-Llama-3-70B-Instruct using GPTQ developed by IST Austria using the following configuration:
- 8bit
- Act order: True
- Group size: 128
Usage
Install vLLM and run the server:
python -m vllm.entrypoints.openai.api_server --model cortecs/Meta-Llama-3-70B-Instruct-GPTQ-8b
Access the model:
curl http://localhost:8000/v1/completions -H "Content-Type: application/json" -d ' {
"model": "cortecs/Meta-Llama-3-70B-Instruct-GPTQ-8b",
"prompt": "San Francisco is a"
} '
Evaluations
English | Meta-Llama-3-70B-Instruct | Meta-Llama-3-70B-Instruct-GPTQ-8b | Meta-Llama-3-70B-Instruct-GPTQ |
---|---|---|---|
Avg. | 76.19 | 76.16 | 75.14 |
ARC | 71.6 | 71.4 | 70.7 |
Hellaswag | 77.3 | 77.1 | 76.4 |
MMLU | 79.66 | 79.98 | 78.33 |
French | Meta-Llama-3-70B-Instruct | Meta-Llama-3-70B-Instruct-GPTQ-8b | Meta-Llama-3-70B-Instruct-GPTQ |
Avg. | 70.97 | 71.03 | 70.27 |
ARC_fr | 65.0 | 65.3 | 64.7 |
Hellaswag_fr | 72.4 | 72.4 | 71.4 |
MMLU_fr | 75.5 | 75.4 | 74.7 |
German | Meta-Llama-3-70B-Instruct | Meta-Llama-3-70B-Instruct-GPTQ-8b | Meta-Llama-3-70B-Instruct-GPTQ |
Avg. | 68.43 | 68.37 | 66.93 |
ARC_de | 64.2 | 64.3 | 62.6 |
Hellaswag_de | 67.8 | 67.7 | 66.7 |
MMLU_de | 73.3 | 73.1 | 71.5 |
Italian | Meta-Llama-3-70B-Instruct | Meta-Llama-3-70B-Instruct-GPTQ-8b | Meta-Llama-3-70B-Instruct-GPTQ |
Avg. | 70.17 | 70.43 | 68.63 |
ARC_it | 64.0 | 64.3 | 62.1 |
Hellaswag_it | 72.6 | 72.4 | 71.0 |
MMLU_it | 73.9 | 74.6 | 72.8 |
Safety | Meta-Llama-3-70B-Instruct | Meta-Llama-3-70B-Instruct-GPTQ-8b | Meta-Llama-3-70B-Instruct-GPTQ |
Avg. | 64.28 | 64.17 | 63.64 |
RealToxicityPrompts | 97.9 | 97.8 | 98.1 |
TruthfulQA | 61.91 | 61.67 | 59.91 |
CrowS | 33.04 | 33.04 | 32.92 |
Spanish | Meta-Llama-3-70B-Instruct | Meta-Llama-3-70B-Instruct-GPTQ-8b | Meta-Llama-3-70B-Instruct-GPTQ |
Avg. | 72.5 | 72.7 | 71.3 |
ARC_es | 66.7 | 66.9 | 65.7 |
Hellaswag_es | 75.8 | 75.9 | 74 |
MMLU_es | 75 | 75.3 | 74.2 |
We did not check for data contamination.
Evaluation was done using Eval. Harness using limit=1000
.
Performance
requests/s | tokens/s | |
---|---|---|
NVIDIA L4x4 | 0.27 | 128.81 |
NVIDIA L4x8 | 1.31 | 624.61 |
Performance measured on cortecs inference. |