Wav2Vec2-Large-XLSR-53-eo

Fine-tuned facebook/wav2vec2-large-xlsr-53 on esperanto using the Common Voice dataset.

When using this model, make sure that your speech input is sampled at 16kHz.

Usage

The model can be used directly (without a language model) as follows:

import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

test_dataset = load_dataset("common_voice", "eo", split="test[:2%]") 
processor = Wav2Vec2Processor.from_pretrained("cpierse/wav2vec2-large-xlsr-53-esperanto") 
model = Wav2Vec2ForCTC.from_pretrained("cpierse/wav2vec2-large-xlsr-53-esperanto") 

resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
   speech_array, sampling_rate = torchaudio.load(batch["path"])
   batch["speech"] = resampler(speech_array).squeeze().numpy()
   return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
   logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])

Evaluation

The model can be evaluated as follows on the Esperanto test data of Common Voice.

import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
import jiwer

def chunked_wer(targets, predictions, chunk_size=None):
    if chunk_size is None: return jiwer.wer(targets, predictions)
    start = 0
    end = chunk_size
    H, S, D, I = 0, 0, 0, 0
    while start < len(targets):
        chunk_metrics = jiwer.compute_measures(targets[start:end], predictions[start:end])
        H = H + chunk_metrics["hits"]
        S = S + chunk_metrics["substitutions"]
        D = D + chunk_metrics["deletions"]
        I = I + chunk_metrics["insertions"]
        start += chunk_size
        end += chunk_size
    return float(S + D + I) / float(H + S + D)

test_dataset = load_dataset("common_voice", "eo", split="test") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site.
wer = load_metric("wer")

processor = Wav2Vec2Processor.from_pretrained("cpierse/wav2vec2-large-xlsr-53-esperanto")
model = Wav2Vec2ForCTC.from_pretrained("cpierse/wav2vec2-large-xlsr-53-esperanto")
model.to("cuda")

chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\β€œ\%\β€˜\”\οΏ½\β€ž\Β«\(\Β»\)\’\']' 
resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
   batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
   speech_array, sampling_rate = torchaudio.load(batch["path"])
   batch["speech"] = resampler(speech_array).squeeze().numpy()
   return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
   inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

   with torch.no_grad():
      logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits

   pred_ids = torch.argmax(logits, dim=-1)
   batch["pred_strings"] = processor.batch_decode(pred_ids)
   return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

print("WER: {:2f}".format(100 * chunked_wer(predictions=result["pred_strings"], targets=result["sentence"],chunk_size=2000)))

Test Result: 12.31 %

Training

The Common Voice train, validation datasets were used for training.

Downloads last month
7,757
Safetensors
Model size
315M params
Tensor type
F32
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for cpierse/wav2vec2-large-xlsr-53-esperanto

Finetunes
1 model

Dataset used to train cpierse/wav2vec2-large-xlsr-53-esperanto

Spaces using cpierse/wav2vec2-large-xlsr-53-esperanto 5

Evaluation results