MMS_Quechua_finetuned_qve

This model is a fine-tuned version of facebook/mms-1b-all on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2527
  • Wer: 0.3191

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.5146 0.1355 100 0.6473 0.5519
0.74 0.2710 200 0.5775 0.4716
0.6064 0.4065 300 0.5398 0.4490
0.59 0.5420 400 0.5168 0.4365
0.5733 0.6775 500 0.5090 0.4707
1.0555 0.8130 600 0.5121 0.4321
0.5509 0.9485 700 0.4951 0.4506
0.6772 1.0840 800 0.4541 0.4161
0.5271 1.2195 900 0.4531 0.4437
0.6283 1.3550 1000 0.4684 0.4198
0.6823 1.4905 1100 0.4647 0.4518
0.7715 1.6260 1200 0.4325 0.4057
0.4755 1.7615 1300 0.4222 0.4048
0.4751 1.8970 1400 0.4169 0.4321
0.6891 2.0325 1500 0.4054 0.4063
0.6245 2.1680 1600 0.3862 0.4060
0.4548 2.3035 1700 0.3839 0.4302
0.4506 2.4390 1800 0.3661 0.4079
0.7592 2.5745 1900 0.3587 0.3916
0.4698 2.7100 2000 0.3737 0.4114
0.6196 2.8455 2100 0.3558 0.3888
0.6997 2.9810 2200 0.3518 0.3822
0.5634 3.1165 2300 0.3674 0.3897
0.4163 3.2520 2400 0.3636 0.3894
0.6243 3.3875 2500 0.3652 0.3721
0.623 3.5230 2600 0.3393 0.3778
0.557 3.6585 2700 0.3453 0.3900
0.573 3.7940 2800 0.3574 0.3885
0.4114 3.9295 2900 0.3537 0.3812
0.6551 4.0650 3000 0.3646 0.3897
0.5701 4.2005 3100 0.3513 0.3954
0.5688 4.3360 3200 0.3395 0.3772
0.5151 4.4715 3300 0.3633 0.3919
0.4063 4.6070 3400 0.3365 0.3781
0.671 4.7425 3500 0.3765 0.4016
0.3761 4.8780 3600 0.3294 0.3734
0.4151 5.0136 3700 0.3322 0.3634
0.3634 5.1491 3800 0.3291 0.3740
0.5112 5.2846 3900 0.3723 0.3762
0.5892 5.4201 4000 0.3300 0.3863
0.723 5.5556 4100 0.3261 0.3659
0.4026 5.6911 4200 0.3332 0.3888
0.3836 5.8266 4300 0.3407 0.3574
0.5441 5.9621 4400 0.3370 0.3803
0.5204 6.0976 4500 0.3405 0.3778
0.3738 6.2331 4600 0.3310 0.3784
0.4918 6.3686 4700 0.3300 0.3768
0.5163 6.5041 4800 0.3314 0.3652
0.3839 6.6396 4900 0.3071 0.3574
0.5652 6.7751 5000 0.3008 0.3624
0.4961 6.9106 5100 0.3086 0.3894
0.58 7.0461 5200 0.3137 0.4010
0.3617 7.1816 5300 0.3328 0.3787
0.4433 7.3171 5400 0.3015 0.3806
0.3693 7.4526 5500 0.2966 0.3693
0.6693 7.5881 5600 0.3112 0.3693
0.4791 7.7236 5700 0.3076 0.3596
0.3541 7.8591 5800 0.3129 0.3590
0.4792 7.9946 5900 0.3028 0.3590
0.3385 8.1301 6000 0.3127 0.3960
0.6656 8.2656 6100 0.3139 0.3806
0.3467 8.4011 6200 0.3235 0.3706
0.4183 8.5366 6300 0.2967 0.3624
0.4535 8.6721 6400 0.3101 0.3524
0.3376 8.8076 6500 0.3109 0.3966
0.4307 8.9431 6600 0.3290 0.3822
0.4738 9.0786 6700 0.3083 0.3511
0.4388 9.2141 6800 0.2974 0.3778
0.3341 9.3496 6900 0.2917 0.3417
0.5376 9.4851 7000 0.2960 0.3436
0.4649 9.6206 7100 0.3293 0.3593
0.347 9.7561 7200 0.2865 0.3470
0.3213 9.8916 7300 0.2892 0.3458
0.5857 10.0271 7400 0.2850 0.3386
0.3177 10.1626 7500 0.2967 0.3502
0.3382 10.2981 7600 0.2828 0.3411
0.6518 10.4336 7700 0.2918 0.3467
0.3755 10.5691 7800 0.2953 0.3404
0.2995 10.7046 7900 0.2988 0.3646
0.3929 10.8401 8000 0.2903 0.3477
0.3097 10.9756 8100 0.2762 0.3659
0.3004 11.1111 8200 0.2929 0.3599
0.312 11.2466 8300 0.2822 0.3527
0.3812 11.3821 8400 0.2833 0.3386
0.3812 11.5176 8500 0.2926 0.3395
0.3133 11.6531 8600 0.2838 0.3414
0.5852 11.7886 8700 0.2836 0.3517
0.3755 11.9241 8800 0.2772 0.3536
0.3526 12.0596 8900 0.2828 0.3621
0.3837 12.1951 9000 0.2826 0.3652
0.318 12.3306 9100 0.2790 0.3696
0.2932 12.4661 9200 0.2846 0.3649
0.5292 12.6016 9300 0.2754 0.3417
0.2977 12.7371 9400 0.2808 0.3652
0.3229 12.8726 9500 0.2811 0.3521
0.3711 13.0081 9600 0.2855 0.3436
0.255 13.1436 9700 0.3100 0.3546
0.369 13.2791 9800 0.2865 0.3326
0.3094 13.4146 9900 0.2817 0.3423
0.5302 13.5501 10000 0.2715 0.3295
0.3156 13.6856 10100 0.2777 0.3439
0.356 13.8211 10200 0.2766 0.3354
0.2856 13.9566 10300 0.2806 0.3436
0.326 14.0921 10400 0.2738 0.3502
0.4744 14.2276 10500 0.2732 0.3339
0.2968 14.3631 10600 0.2683 0.3332
0.2897 14.4986 10700 0.2704 0.3373
0.2684 14.6341 10800 0.2694 0.3470
0.2939 14.7696 10900 0.2762 0.3345
0.2777 14.9051 11000 0.2646 0.3514
0.2785 15.0407 11100 0.2633 0.3404
0.2633 15.1762 11200 0.2640 0.3426
0.2957 15.3117 11300 0.2654 0.3546
0.2758 15.4472 11400 0.2694 0.3467
0.2881 15.5827 11500 0.2628 0.3329
0.522 15.7182 11600 0.2636 0.3348
0.2944 15.8537 11700 0.2656 0.3458
0.2911 15.9892 11800 0.2598 0.3401
0.2578 16.1247 11900 0.2629 0.3452
0.2737 16.2602 12000 0.2612 0.3464
0.3107 16.3957 12100 0.2566 0.3401
0.4585 16.5312 12200 0.2489 0.3549
0.2808 16.6667 12300 0.2566 0.3558
0.2682 16.8022 12400 0.2566 0.3455
0.2603 16.9377 12500 0.2552 0.3348
0.2951 17.0732 12600 0.2521 0.3310
0.2658 17.2087 12700 0.2599 0.3332
0.2642 17.3442 12800 0.2578 0.3282
0.2603 17.4797 12900 0.2586 0.3204
0.2675 17.6152 13000 0.2625 0.3332
0.2587 17.7507 13100 0.2566 0.3282
0.4357 17.8862 13200 0.2550 0.3191
0.2487 18.0217 13300 0.2534 0.3248
0.4185 18.1572 13400 0.2579 0.3241
0.2771 18.2927 13500 0.2549 0.3201
0.2514 18.4282 13600 0.2588 0.3175
0.2615 18.5637 13700 0.2527 0.3222
0.2658 18.6992 13800 0.2534 0.3160
0.2415 18.8347 13900 0.2525 0.3229
0.2427 18.9702 14000 0.2533 0.3248
0.2477 19.1057 14100 0.2517 0.3185
0.2475 19.2412 14200 0.2521 0.3201
0.259 19.3767 14300 0.2535 0.3232
0.2765 19.5122 14400 0.2522 0.3197
0.2503 19.6477 14500 0.2513 0.3210
0.3933 19.7832 14600 0.2525 0.3188
0.2434 19.9187 14700 0.2527 0.3191

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
8
Safetensors
Model size
965M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for cportoca/MMS_Quechua_finetuned_qve

Finetuned
(242)
this model