cportoca commited on
Commit
5d77095
·
verified ·
1 Parent(s): ba9c711

cportoca/MMS_Quechua_finetuned_qve

Browse files
Files changed (1) hide show
  1. README.md +209 -0
README.md ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: cc-by-nc-4.0
4
+ base_model: facebook/mms-1b-all
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - wer
9
+ model-index:
10
+ - name: MMS_Quechua_finetuned_qve
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # MMS_Quechua_finetuned_qve
18
+
19
+ This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.2527
22
+ - Wer: 0.3191
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 0.001
42
+ - train_batch_size: 16
43
+ - eval_batch_size: 8
44
+ - seed: 42
45
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_steps: 100
48
+ - num_epochs: 20
49
+ - mixed_precision_training: Native AMP
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
54
+ |:-------------:|:-------:|:-----:|:---------------:|:------:|
55
+ | 1.5146 | 0.1355 | 100 | 0.6473 | 0.5519 |
56
+ | 0.74 | 0.2710 | 200 | 0.5775 | 0.4716 |
57
+ | 0.6064 | 0.4065 | 300 | 0.5398 | 0.4490 |
58
+ | 0.59 | 0.5420 | 400 | 0.5168 | 0.4365 |
59
+ | 0.5733 | 0.6775 | 500 | 0.5090 | 0.4707 |
60
+ | 1.0555 | 0.8130 | 600 | 0.5121 | 0.4321 |
61
+ | 0.5509 | 0.9485 | 700 | 0.4951 | 0.4506 |
62
+ | 0.6772 | 1.0840 | 800 | 0.4541 | 0.4161 |
63
+ | 0.5271 | 1.2195 | 900 | 0.4531 | 0.4437 |
64
+ | 0.6283 | 1.3550 | 1000 | 0.4684 | 0.4198 |
65
+ | 0.6823 | 1.4905 | 1100 | 0.4647 | 0.4518 |
66
+ | 0.7715 | 1.6260 | 1200 | 0.4325 | 0.4057 |
67
+ | 0.4755 | 1.7615 | 1300 | 0.4222 | 0.4048 |
68
+ | 0.4751 | 1.8970 | 1400 | 0.4169 | 0.4321 |
69
+ | 0.6891 | 2.0325 | 1500 | 0.4054 | 0.4063 |
70
+ | 0.6245 | 2.1680 | 1600 | 0.3862 | 0.4060 |
71
+ | 0.4548 | 2.3035 | 1700 | 0.3839 | 0.4302 |
72
+ | 0.4506 | 2.4390 | 1800 | 0.3661 | 0.4079 |
73
+ | 0.7592 | 2.5745 | 1900 | 0.3587 | 0.3916 |
74
+ | 0.4698 | 2.7100 | 2000 | 0.3737 | 0.4114 |
75
+ | 0.6196 | 2.8455 | 2100 | 0.3558 | 0.3888 |
76
+ | 0.6997 | 2.9810 | 2200 | 0.3518 | 0.3822 |
77
+ | 0.5634 | 3.1165 | 2300 | 0.3674 | 0.3897 |
78
+ | 0.4163 | 3.2520 | 2400 | 0.3636 | 0.3894 |
79
+ | 0.6243 | 3.3875 | 2500 | 0.3652 | 0.3721 |
80
+ | 0.623 | 3.5230 | 2600 | 0.3393 | 0.3778 |
81
+ | 0.557 | 3.6585 | 2700 | 0.3453 | 0.3900 |
82
+ | 0.573 | 3.7940 | 2800 | 0.3574 | 0.3885 |
83
+ | 0.4114 | 3.9295 | 2900 | 0.3537 | 0.3812 |
84
+ | 0.6551 | 4.0650 | 3000 | 0.3646 | 0.3897 |
85
+ | 0.5701 | 4.2005 | 3100 | 0.3513 | 0.3954 |
86
+ | 0.5688 | 4.3360 | 3200 | 0.3395 | 0.3772 |
87
+ | 0.5151 | 4.4715 | 3300 | 0.3633 | 0.3919 |
88
+ | 0.4063 | 4.6070 | 3400 | 0.3365 | 0.3781 |
89
+ | 0.671 | 4.7425 | 3500 | 0.3765 | 0.4016 |
90
+ | 0.3761 | 4.8780 | 3600 | 0.3294 | 0.3734 |
91
+ | 0.4151 | 5.0136 | 3700 | 0.3322 | 0.3634 |
92
+ | 0.3634 | 5.1491 | 3800 | 0.3291 | 0.3740 |
93
+ | 0.5112 | 5.2846 | 3900 | 0.3723 | 0.3762 |
94
+ | 0.5892 | 5.4201 | 4000 | 0.3300 | 0.3863 |
95
+ | 0.723 | 5.5556 | 4100 | 0.3261 | 0.3659 |
96
+ | 0.4026 | 5.6911 | 4200 | 0.3332 | 0.3888 |
97
+ | 0.3836 | 5.8266 | 4300 | 0.3407 | 0.3574 |
98
+ | 0.5441 | 5.9621 | 4400 | 0.3370 | 0.3803 |
99
+ | 0.5204 | 6.0976 | 4500 | 0.3405 | 0.3778 |
100
+ | 0.3738 | 6.2331 | 4600 | 0.3310 | 0.3784 |
101
+ | 0.4918 | 6.3686 | 4700 | 0.3300 | 0.3768 |
102
+ | 0.5163 | 6.5041 | 4800 | 0.3314 | 0.3652 |
103
+ | 0.3839 | 6.6396 | 4900 | 0.3071 | 0.3574 |
104
+ | 0.5652 | 6.7751 | 5000 | 0.3008 | 0.3624 |
105
+ | 0.4961 | 6.9106 | 5100 | 0.3086 | 0.3894 |
106
+ | 0.58 | 7.0461 | 5200 | 0.3137 | 0.4010 |
107
+ | 0.3617 | 7.1816 | 5300 | 0.3328 | 0.3787 |
108
+ | 0.4433 | 7.3171 | 5400 | 0.3015 | 0.3806 |
109
+ | 0.3693 | 7.4526 | 5500 | 0.2966 | 0.3693 |
110
+ | 0.6693 | 7.5881 | 5600 | 0.3112 | 0.3693 |
111
+ | 0.4791 | 7.7236 | 5700 | 0.3076 | 0.3596 |
112
+ | 0.3541 | 7.8591 | 5800 | 0.3129 | 0.3590 |
113
+ | 0.4792 | 7.9946 | 5900 | 0.3028 | 0.3590 |
114
+ | 0.3385 | 8.1301 | 6000 | 0.3127 | 0.3960 |
115
+ | 0.6656 | 8.2656 | 6100 | 0.3139 | 0.3806 |
116
+ | 0.3467 | 8.4011 | 6200 | 0.3235 | 0.3706 |
117
+ | 0.4183 | 8.5366 | 6300 | 0.2967 | 0.3624 |
118
+ | 0.4535 | 8.6721 | 6400 | 0.3101 | 0.3524 |
119
+ | 0.3376 | 8.8076 | 6500 | 0.3109 | 0.3966 |
120
+ | 0.4307 | 8.9431 | 6600 | 0.3290 | 0.3822 |
121
+ | 0.4738 | 9.0786 | 6700 | 0.3083 | 0.3511 |
122
+ | 0.4388 | 9.2141 | 6800 | 0.2974 | 0.3778 |
123
+ | 0.3341 | 9.3496 | 6900 | 0.2917 | 0.3417 |
124
+ | 0.5376 | 9.4851 | 7000 | 0.2960 | 0.3436 |
125
+ | 0.4649 | 9.6206 | 7100 | 0.3293 | 0.3593 |
126
+ | 0.347 | 9.7561 | 7200 | 0.2865 | 0.3470 |
127
+ | 0.3213 | 9.8916 | 7300 | 0.2892 | 0.3458 |
128
+ | 0.5857 | 10.0271 | 7400 | 0.2850 | 0.3386 |
129
+ | 0.3177 | 10.1626 | 7500 | 0.2967 | 0.3502 |
130
+ | 0.3382 | 10.2981 | 7600 | 0.2828 | 0.3411 |
131
+ | 0.6518 | 10.4336 | 7700 | 0.2918 | 0.3467 |
132
+ | 0.3755 | 10.5691 | 7800 | 0.2953 | 0.3404 |
133
+ | 0.2995 | 10.7046 | 7900 | 0.2988 | 0.3646 |
134
+ | 0.3929 | 10.8401 | 8000 | 0.2903 | 0.3477 |
135
+ | 0.3097 | 10.9756 | 8100 | 0.2762 | 0.3659 |
136
+ | 0.3004 | 11.1111 | 8200 | 0.2929 | 0.3599 |
137
+ | 0.312 | 11.2466 | 8300 | 0.2822 | 0.3527 |
138
+ | 0.3812 | 11.3821 | 8400 | 0.2833 | 0.3386 |
139
+ | 0.3812 | 11.5176 | 8500 | 0.2926 | 0.3395 |
140
+ | 0.3133 | 11.6531 | 8600 | 0.2838 | 0.3414 |
141
+ | 0.5852 | 11.7886 | 8700 | 0.2836 | 0.3517 |
142
+ | 0.3755 | 11.9241 | 8800 | 0.2772 | 0.3536 |
143
+ | 0.3526 | 12.0596 | 8900 | 0.2828 | 0.3621 |
144
+ | 0.3837 | 12.1951 | 9000 | 0.2826 | 0.3652 |
145
+ | 0.318 | 12.3306 | 9100 | 0.2790 | 0.3696 |
146
+ | 0.2932 | 12.4661 | 9200 | 0.2846 | 0.3649 |
147
+ | 0.5292 | 12.6016 | 9300 | 0.2754 | 0.3417 |
148
+ | 0.2977 | 12.7371 | 9400 | 0.2808 | 0.3652 |
149
+ | 0.3229 | 12.8726 | 9500 | 0.2811 | 0.3521 |
150
+ | 0.3711 | 13.0081 | 9600 | 0.2855 | 0.3436 |
151
+ | 0.255 | 13.1436 | 9700 | 0.3100 | 0.3546 |
152
+ | 0.369 | 13.2791 | 9800 | 0.2865 | 0.3326 |
153
+ | 0.3094 | 13.4146 | 9900 | 0.2817 | 0.3423 |
154
+ | 0.5302 | 13.5501 | 10000 | 0.2715 | 0.3295 |
155
+ | 0.3156 | 13.6856 | 10100 | 0.2777 | 0.3439 |
156
+ | 0.356 | 13.8211 | 10200 | 0.2766 | 0.3354 |
157
+ | 0.2856 | 13.9566 | 10300 | 0.2806 | 0.3436 |
158
+ | 0.326 | 14.0921 | 10400 | 0.2738 | 0.3502 |
159
+ | 0.4744 | 14.2276 | 10500 | 0.2732 | 0.3339 |
160
+ | 0.2968 | 14.3631 | 10600 | 0.2683 | 0.3332 |
161
+ | 0.2897 | 14.4986 | 10700 | 0.2704 | 0.3373 |
162
+ | 0.2684 | 14.6341 | 10800 | 0.2694 | 0.3470 |
163
+ | 0.2939 | 14.7696 | 10900 | 0.2762 | 0.3345 |
164
+ | 0.2777 | 14.9051 | 11000 | 0.2646 | 0.3514 |
165
+ | 0.2785 | 15.0407 | 11100 | 0.2633 | 0.3404 |
166
+ | 0.2633 | 15.1762 | 11200 | 0.2640 | 0.3426 |
167
+ | 0.2957 | 15.3117 | 11300 | 0.2654 | 0.3546 |
168
+ | 0.2758 | 15.4472 | 11400 | 0.2694 | 0.3467 |
169
+ | 0.2881 | 15.5827 | 11500 | 0.2628 | 0.3329 |
170
+ | 0.522 | 15.7182 | 11600 | 0.2636 | 0.3348 |
171
+ | 0.2944 | 15.8537 | 11700 | 0.2656 | 0.3458 |
172
+ | 0.2911 | 15.9892 | 11800 | 0.2598 | 0.3401 |
173
+ | 0.2578 | 16.1247 | 11900 | 0.2629 | 0.3452 |
174
+ | 0.2737 | 16.2602 | 12000 | 0.2612 | 0.3464 |
175
+ | 0.3107 | 16.3957 | 12100 | 0.2566 | 0.3401 |
176
+ | 0.4585 | 16.5312 | 12200 | 0.2489 | 0.3549 |
177
+ | 0.2808 | 16.6667 | 12300 | 0.2566 | 0.3558 |
178
+ | 0.2682 | 16.8022 | 12400 | 0.2566 | 0.3455 |
179
+ | 0.2603 | 16.9377 | 12500 | 0.2552 | 0.3348 |
180
+ | 0.2951 | 17.0732 | 12600 | 0.2521 | 0.3310 |
181
+ | 0.2658 | 17.2087 | 12700 | 0.2599 | 0.3332 |
182
+ | 0.2642 | 17.3442 | 12800 | 0.2578 | 0.3282 |
183
+ | 0.2603 | 17.4797 | 12900 | 0.2586 | 0.3204 |
184
+ | 0.2675 | 17.6152 | 13000 | 0.2625 | 0.3332 |
185
+ | 0.2587 | 17.7507 | 13100 | 0.2566 | 0.3282 |
186
+ | 0.4357 | 17.8862 | 13200 | 0.2550 | 0.3191 |
187
+ | 0.2487 | 18.0217 | 13300 | 0.2534 | 0.3248 |
188
+ | 0.4185 | 18.1572 | 13400 | 0.2579 | 0.3241 |
189
+ | 0.2771 | 18.2927 | 13500 | 0.2549 | 0.3201 |
190
+ | 0.2514 | 18.4282 | 13600 | 0.2588 | 0.3175 |
191
+ | 0.2615 | 18.5637 | 13700 | 0.2527 | 0.3222 |
192
+ | 0.2658 | 18.6992 | 13800 | 0.2534 | 0.3160 |
193
+ | 0.2415 | 18.8347 | 13900 | 0.2525 | 0.3229 |
194
+ | 0.2427 | 18.9702 | 14000 | 0.2533 | 0.3248 |
195
+ | 0.2477 | 19.1057 | 14100 | 0.2517 | 0.3185 |
196
+ | 0.2475 | 19.2412 | 14200 | 0.2521 | 0.3201 |
197
+ | 0.259 | 19.3767 | 14300 | 0.2535 | 0.3232 |
198
+ | 0.2765 | 19.5122 | 14400 | 0.2522 | 0.3197 |
199
+ | 0.2503 | 19.6477 | 14500 | 0.2513 | 0.3210 |
200
+ | 0.3933 | 19.7832 | 14600 | 0.2525 | 0.3188 |
201
+ | 0.2434 | 19.9187 | 14700 | 0.2527 | 0.3191 |
202
+
203
+
204
+ ### Framework versions
205
+
206
+ - Transformers 4.46.3
207
+ - Pytorch 2.4.1+cu121
208
+ - Datasets 3.1.0
209
+ - Tokenizers 0.20.3