|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
from scipy.ndimage import convolve |
|
from scipy.ndimage import distance_transform_edt as bwdist |
|
import cv2 |
|
from PIL import Image |
|
|
|
_EPS = 1e-16 |
|
_TYPE = np.float64 |
|
|
|
|
|
def _prepare_data(pred: np.ndarray, gt: np.ndarray) -> tuple: |
|
""" |
|
A numpy-based function for preparing ``pred`` and ``gt``. |
|
|
|
- for ``pred``, it looks like ``mapminmax(im2double(...))`` of matlab; |
|
- ``gt`` will be binarized by 128. |
|
|
|
:param pred: prediction |
|
:param gt: mask |
|
:return: pred, gt |
|
""" |
|
gt = gt > 128 |
|
pred = pred / 255 |
|
if pred.max() != pred.min(): |
|
pred = (pred - pred.min()) / (pred.max() - pred.min()) |
|
return pred, gt |
|
|
|
|
|
def _get_adaptive_threshold(matrix: np.ndarray, max_value: float = 1) -> float: |
|
""" |
|
Return an adaptive threshold, which is equal to twice the mean of ``matrix``. |
|
|
|
:param matrix: a data array |
|
:param max_value: the upper limit of the threshold |
|
:return: min(2 * matrix.mean(), max_value) |
|
""" |
|
return min(2 * matrix.mean(), max_value) |
|
|
|
|
|
class IoU(object): |
|
def __init__(self): |
|
self.ious = [] |
|
|
|
def step(self, pred: np.ndarray, gt: np.ndarray): |
|
pred, gt = _prepare_data(pred, gt) |
|
|
|
ious = self.cal_iou(pred=pred, gt=gt) |
|
self.ious.append(ious) |
|
|
|
def cal_iou(self, pred, gt): |
|
pred = (pred * 255).astype(np.uint8) |
|
|
|
bins = np.linspace(0, 256, 257) |
|
fg_hist, _ = np.histogram(pred[gt], bins=bins) |
|
bg_hist, _ = np.histogram(pred[~gt], bins=bins) |
|
fg_w_thrs = np.cumsum(np.flip(fg_hist), axis=0) |
|
bg_w_thrs = np.cumsum(np.flip(bg_hist), axis=0) |
|
TPs = fg_w_thrs |
|
Ps = fg_w_thrs + bg_w_thrs |
|
Ps[Ps == 0] = 1 |
|
T = max(np.count_nonzero(gt), 1) |
|
|
|
ious = TPs / (T + bg_w_thrs) |
|
return ious |
|
|
|
def get_results(self) -> dict: |
|
iou = np.mean(np.array(self.ious, dtype=_TYPE), axis=0) |
|
return dict(iou=dict(curve=iou)) |
|
|
|
class BIoU(object): |
|
def __init__(self, dilation_ratio=0.02): |
|
self.bious = [] |
|
self.dilation_ratio = dilation_ratio |
|
|
|
def mask_to_boundary(self, mask): |
|
h, w = mask.shape |
|
img_diag = np.sqrt(h ** 2 + w ** 2) |
|
dilation = int(round(self.dilation_ratio * img_diag)) |
|
if dilation < 1: |
|
dilation = 1 |
|
|
|
new_mask = cv2.copyMakeBorder(mask, 1, 1, 1, 1, cv2.BORDER_CONSTANT, value=0) |
|
kernel = np.ones((3, 3), dtype=np.uint8) |
|
new_mask_erode = cv2.erode(new_mask, kernel, iterations=dilation) |
|
mask_erode = new_mask_erode[1 : h + 1, 1 : w + 1] |
|
|
|
return mask - mask_erode |
|
|
|
def step(self, pred: np.ndarray, gt: np.ndarray): |
|
pred, gt = _prepare_data(pred, gt) |
|
|
|
bious = self.cal_biou(pred=pred, gt=gt) |
|
self.bious.append(bious) |
|
|
|
def cal_biou(self, pred, gt): |
|
pred = (pred * 255).astype(np.uint8) |
|
pred = self.mask_to_boundary(pred) |
|
gt = (gt * 255).astype(np.uint8) |
|
gt = self.mask_to_boundary(gt) |
|
gt = gt > 128 |
|
|
|
bins = np.linspace(0, 256, 257) |
|
fg_hist, _ = np.histogram(pred[gt], bins=bins) |
|
bg_hist, _ = np.histogram(pred[~gt], bins=bins) |
|
fg_w_thrs = np.cumsum(np.flip(fg_hist), axis=0) |
|
bg_w_thrs = np.cumsum(np.flip(bg_hist), axis=0) |
|
TPs = fg_w_thrs |
|
Ps = fg_w_thrs + bg_w_thrs |
|
Ps[Ps == 0] = 1 |
|
T = max(np.count_nonzero(gt), 1) |
|
|
|
ious = TPs / (T + bg_w_thrs) |
|
return ious |
|
|
|
def get_results(self) -> dict: |
|
biou = np.mean(np.array(self.bious, dtype=_TYPE), axis=0) |
|
return dict(biou=dict(curve=biou)) |
|
|
|
class TIoU(object): |
|
def __init__(self, dilation_ratio=0.001): |
|
self.tious = [] |
|
self.dilation_ratio = dilation_ratio |
|
|
|
def mask_to_boundary(self, mask): |
|
h, w = mask.shape |
|
img_diag = np.sqrt(h ** 2 + w ** 2) |
|
dilation = int(round(self.dilation_ratio * img_diag)) |
|
if dilation < 1: |
|
dilation = 1 |
|
|
|
new_mask = cv2.copyMakeBorder(mask, 1, 1, 1, 1, cv2.BORDER_CONSTANT, value=0) |
|
kernel = np.ones((3, 3), dtype=np.uint8) |
|
new_mask_erode = cv2.erode(new_mask, kernel, iterations=dilation) |
|
mask_erode = new_mask_erode[1 : h + 1, 1 : w + 1] |
|
|
|
return mask - mask_erode |
|
|
|
def step(self, pred: np.ndarray, gt: np.ndarray): |
|
pred, gt = _prepare_data(pred, gt) |
|
|
|
tious = self.cal_tiou(pred=pred, gt=gt) |
|
self.tious.append(tious) |
|
|
|
def cal_tiou(self, pred, gt): |
|
pred = (pred * 255).astype(np.uint8) |
|
|
|
gt = (gt * 255).astype(np.uint8) |
|
gt = self.mask_to_boundary(gt) |
|
gt = gt > 128 |
|
|
|
pred = pred * gt |
|
|
|
bins = np.linspace(0, 256, 257) |
|
fg_hist, _ = np.histogram(pred[gt], bins=bins) |
|
bg_hist, _ = np.histogram(pred[~gt], bins=bins) |
|
fg_w_thrs = np.cumsum(np.flip(fg_hist), axis=0) |
|
bg_w_thrs = np.cumsum(np.flip(bg_hist), axis=0) |
|
TPs = fg_w_thrs |
|
Ps = fg_w_thrs + bg_w_thrs |
|
Ps[Ps == 0] = 1 |
|
T = max(np.count_nonzero(gt), 1) |
|
|
|
ious = TPs / (T + bg_w_thrs) |
|
return ious |
|
|
|
def get_results(self) -> dict: |
|
tiou = np.mean(np.array(self.tious, dtype=_TYPE), axis=0) |
|
return dict(tiou=dict(curve=tiou)) |
|
|
|
|
|
class Fmeasure(object): |
|
def __init__(self, beta: float = 0.3): |
|
""" |
|
F-measure for SOD. |
|
|
|
:: |
|
|
|
@inproceedings{Fmeasure, |
|
title={Frequency-tuned salient region detection}, |
|
author={Achanta, Radhakrishna and Hemami, Sheila and Estrada, Francisco and S{\"u}sstrunk, Sabine}, |
|
booktitle=CVPR, |
|
number={CONF}, |
|
pages={1597--1604}, |
|
year={2009} |
|
} |
|
|
|
:param beta: the weight of the precision |
|
""" |
|
self.beta = beta |
|
self.precisions = [] |
|
self.recalls = [] |
|
self.adaptive_fms = [] |
|
self.changeable_fms = [] |
|
|
|
def step(self, pred: np.ndarray, gt: np.ndarray): |
|
pred, gt = _prepare_data(pred, gt) |
|
|
|
adaptive_fm = self.cal_adaptive_fm(pred=pred, gt=gt) |
|
self.adaptive_fms.append(adaptive_fm) |
|
|
|
precisions, recalls, changeable_fms = self.cal_pr(pred=pred, gt=gt) |
|
self.precisions.append(precisions) |
|
self.recalls.append(recalls) |
|
self.changeable_fms.append(changeable_fms) |
|
|
|
def cal_adaptive_fm(self, pred: np.ndarray, gt: np.ndarray) -> float: |
|
""" |
|
Calculate the adaptive F-measure. |
|
|
|
:return: adaptive_fm |
|
""" |
|
adaptive_threshold = _get_adaptive_threshold(pred, max_value=1) |
|
binary_predcition = pred >= adaptive_threshold |
|
area_intersection = binary_predcition[gt].sum() |
|
if area_intersection == 0: |
|
adaptive_fm = 0 |
|
else: |
|
pre = area_intersection / np.count_nonzero(binary_predcition) |
|
rec = area_intersection / np.count_nonzero(gt) |
|
adaptive_fm = (1 + self.beta) * pre * rec / (self.beta * pre + rec) |
|
return adaptive_fm |
|
|
|
def cal_pr(self, pred: np.ndarray, gt: np.ndarray) -> tuple: |
|
""" |
|
Calculate the corresponding precision and recall when the threshold changes from 0 to 255. |
|
|
|
These precisions and recalls can be used to obtain the mean F-measure, maximum F-measure, |
|
precision-recall curve and F-measure-threshold curve. |
|
|
|
For convenience, ``changeable_fms`` is provided here, which can be used directly to obtain |
|
the mean F-measure, maximum F-measure and F-measure-threshold curve. |
|
|
|
:return: precisions, recalls, changeable_fms |
|
""" |
|
pred = (pred * 255).astype(np.uint8) |
|
bins = np.linspace(0, 256, 257) |
|
fg_hist, _ = np.histogram(pred[gt], bins=bins) |
|
bg_hist, _ = np.histogram(pred[~gt], bins=bins) |
|
fg_w_thrs = np.cumsum(np.flip(fg_hist), axis=0) |
|
bg_w_thrs = np.cumsum(np.flip(bg_hist), axis=0) |
|
TPs = fg_w_thrs |
|
Ps = fg_w_thrs + bg_w_thrs |
|
Ps[Ps == 0] = 1 |
|
T = max(np.count_nonzero(gt), 1) |
|
precisions = TPs / Ps |
|
recalls = TPs / T |
|
|
|
numerator = (1 + self.beta) * precisions * recalls |
|
denominator = np.where(numerator == 0, 1, self.beta * precisions + recalls) |
|
changeable_fms = numerator / denominator |
|
return precisions, recalls, changeable_fms |
|
|
|
def get_results(self) -> dict: |
|
""" |
|
Return the results about F-measure. |
|
|
|
:return: dict(fm=dict(adp=adaptive_fm, curve=changeable_fm), pr=dict(p=precision, r=recall)) |
|
""" |
|
adaptive_fm = np.mean(np.array(self.adaptive_fms, _TYPE)) |
|
changeable_fm = np.mean(np.array(self.changeable_fms, dtype=_TYPE), axis=0) |
|
precision = np.mean(np.array(self.precisions, dtype=_TYPE), axis=0) |
|
recall = np.mean(np.array(self.recalls, dtype=_TYPE), axis=0) |
|
return dict(fm=dict(adp=adaptive_fm, curve=changeable_fm), pr=dict(p=precision, r=recall)) |
|
|
|
|
|
class Mae(object): |
|
def __init__(self): |
|
""" |
|
MAE(mean absolute error) for SOD. |
|
|
|
:: |
|
|
|
@inproceedings{MAE, |
|
title={Saliency filters: Contrast based filtering for salient region detection}, |
|
author={Perazzi, Federico and Kr{\"a}henb{\"u}hl, Philipp and Pritch, Yael and Hornung, Alexander}, |
|
booktitle=CVPR, |
|
pages={733--740}, |
|
year={2012} |
|
} |
|
""" |
|
self.maes = [] |
|
|
|
def step(self, pred: np.ndarray, gt: np.ndarray): |
|
pred, gt = _prepare_data(pred, gt) |
|
|
|
mae = self.cal_mae(pred, gt) |
|
self.maes.append(mae) |
|
|
|
def cal_mae(self, pred: np.ndarray, gt: np.ndarray) -> np.ndarray: |
|
""" |
|
Calculate the mean absolute error. |
|
|
|
:return: mae |
|
""" |
|
mae = np.mean(np.abs(pred - gt)) |
|
return mae |
|
|
|
def get_results(self) -> dict: |
|
""" |
|
Return the results about MAE. |
|
|
|
:return: dict(mae=mae) |
|
""" |
|
mae = np.mean(np.array(self.maes, _TYPE)) |
|
return dict(mae=mae) |
|
|
|
|
|
class Mse(object): |
|
def __init__(self): |
|
""" |
|
MAE(mean absolute error) for SOD. |
|
|
|
:: |
|
|
|
@inproceedings{MAE, |
|
title={Saliency filters: Contrast based filtering for salient region detection}, |
|
author={Perazzi, Federico and Kr{\"a}henb{\"u}hl, Philipp and Pritch, Yael and Hornung, Alexander}, |
|
booktitle=CVPR, |
|
pages={733--740}, |
|
year={2012} |
|
} |
|
""" |
|
self.mses = [] |
|
|
|
def step(self, pred: np.ndarray, gt: np.ndarray): |
|
pred, gt = _prepare_data(pred, gt) |
|
|
|
mse = self.cal_mse(pred, gt) |
|
self.mses.append(mse) |
|
|
|
def cal_mse(self, pred: np.ndarray, gt: np.ndarray) -> np.ndarray: |
|
""" |
|
Calculate the mean absolute error. |
|
|
|
:return: mse |
|
""" |
|
mse = np.mean((pred - gt) ** 2) |
|
return mse |
|
|
|
def get_results(self) -> dict: |
|
""" |
|
Return the results about MSE. |
|
|
|
:return: dict(mse=mse) |
|
""" |
|
mse = np.mean(np.array(self.mses, _TYPE)) |
|
return dict(mse=mse) |
|
|
|
|
|
class Smeasure(object): |
|
def __init__(self, alpha: float = 0.5): |
|
""" |
|
S-measure(Structure-measure) of SOD. |
|
|
|
:: |
|
|
|
@inproceedings{Smeasure, |
|
title={Structure-measure: A new way to eval foreground maps}, |
|
author={Fan, Deng-Ping and Cheng, Ming-Ming and Liu, Yun and Li, Tao and Borji, Ali}, |
|
booktitle=ICCV, |
|
pages={4548--4557}, |
|
year={2017} |
|
} |
|
|
|
:param alpha: the weight for balancing the object score and the region score |
|
""" |
|
self.sms = [] |
|
self.alpha = alpha |
|
|
|
def step(self, pred: np.ndarray, gt: np.ndarray): |
|
pred, gt = _prepare_data(pred=pred, gt=gt) |
|
|
|
sm = self.cal_sm(pred, gt) |
|
self.sms.append(sm) |
|
|
|
def cal_sm(self, pred: np.ndarray, gt: np.ndarray) -> float: |
|
""" |
|
Calculate the S-measure. |
|
|
|
:return: s-measure |
|
""" |
|
y = np.mean(gt) |
|
if y == 0: |
|
sm = 1 - np.mean(pred) |
|
elif y == 1: |
|
sm = np.mean(pred) |
|
else: |
|
sm = self.alpha * self.object(pred, gt) + (1 - self.alpha) * self.region(pred, gt) |
|
sm = max(0, sm) |
|
return sm |
|
|
|
def object(self, pred: np.ndarray, gt: np.ndarray) -> float: |
|
""" |
|
Calculate the object score. |
|
""" |
|
fg = pred * gt |
|
bg = (1 - pred) * (1 - gt) |
|
u = np.mean(gt) |
|
object_score = u * self.s_object(fg, gt) + (1 - u) * self.s_object(bg, 1 - gt) |
|
return object_score |
|
|
|
def s_object(self, pred: np.ndarray, gt: np.ndarray) -> float: |
|
x = np.mean(pred[gt == 1]) |
|
sigma_x = np.std(pred[gt == 1]) |
|
score = 2 * x / (np.power(x, 2) + 1 + sigma_x + _EPS) |
|
return score |
|
|
|
def region(self, pred: np.ndarray, gt: np.ndarray) -> float: |
|
""" |
|
Calculate the region score. |
|
""" |
|
x, y = self.centroid(gt) |
|
part_info = self.divide_with_xy(pred, gt, x, y) |
|
w1, w2, w3, w4 = part_info["weight"] |
|
|
|
pred1, pred2, pred3, pred4 = part_info["pred"] |
|
gt1, gt2, gt3, gt4 = part_info["gt"] |
|
score1 = self.ssim(pred1, gt1) |
|
score2 = self.ssim(pred2, gt2) |
|
score3 = self.ssim(pred3, gt3) |
|
score4 = self.ssim(pred4, gt4) |
|
|
|
return w1 * score1 + w2 * score2 + w3 * score3 + w4 * score4 |
|
|
|
def centroid(self, matrix: np.ndarray) -> tuple: |
|
""" |
|
To ensure consistency with the matlab code, one is added to the centroid coordinate, |
|
so there is no need to use the redundant addition operation when dividing the region later, |
|
because the sequence generated by ``1:X`` in matlab will contain ``X``. |
|
|
|
:param matrix: a data array |
|
:return: the centroid coordinate |
|
""" |
|
h, w = matrix.shape |
|
if matrix.sum() == 0: |
|
x = np.round(w / 2) |
|
y = np.round(h / 2) |
|
else: |
|
area_object = np.sum(matrix) |
|
row_ids = np.arange(h) |
|
col_ids = np.arange(w) |
|
x = np.round(np.sum(np.sum(matrix, axis=0) * col_ids) / area_object) |
|
y = np.round(np.sum(np.sum(matrix, axis=1) * row_ids) / area_object) |
|
return int(x) + 1, int(y) + 1 |
|
|
|
def divide_with_xy(self, pred: np.ndarray, gt: np.ndarray, x: int, y: int) -> dict: |
|
""" |
|
Use (x,y) to divide the ``pred`` and the ``gt`` into four submatrices, respectively. |
|
""" |
|
h, w = gt.shape |
|
area = h * w |
|
|
|
gt_LT = gt[0:y, 0:x] |
|
gt_RT = gt[0:y, x:w] |
|
gt_LB = gt[y:h, 0:x] |
|
gt_RB = gt[y:h, x:w] |
|
|
|
pred_LT = pred[0:y, 0:x] |
|
pred_RT = pred[0:y, x:w] |
|
pred_LB = pred[y:h, 0:x] |
|
pred_RB = pred[y:h, x:w] |
|
|
|
w1 = x * y / area |
|
w2 = y * (w - x) / area |
|
w3 = (h - y) * x / area |
|
w4 = 1 - w1 - w2 - w3 |
|
|
|
return dict( |
|
gt=(gt_LT, gt_RT, gt_LB, gt_RB), |
|
pred=(pred_LT, pred_RT, pred_LB, pred_RB), |
|
weight=(w1, w2, w3, w4), |
|
) |
|
|
|
def ssim(self, pred: np.ndarray, gt: np.ndarray) -> float: |
|
""" |
|
Calculate the ssim score. |
|
""" |
|
h, w = pred.shape |
|
N = h * w |
|
|
|
x = np.mean(pred) |
|
y = np.mean(gt) |
|
|
|
sigma_x = np.sum((pred - x) ** 2) / (N - 1) |
|
sigma_y = np.sum((gt - y) ** 2) / (N - 1) |
|
sigma_xy = np.sum((pred - x) * (gt - y)) / (N - 1) |
|
|
|
alpha = 4 * x * y * sigma_xy |
|
beta = (x ** 2 + y ** 2) * (sigma_x + sigma_y) |
|
|
|
if alpha != 0: |
|
score = alpha / (beta + _EPS) |
|
elif alpha == 0 and beta == 0: |
|
score = 1 |
|
else: |
|
score = 0 |
|
return score |
|
|
|
def get_results(self) -> dict: |
|
""" |
|
Return the results about S-measure. |
|
|
|
:return: dict(sm=sm) |
|
""" |
|
sm = np.mean(np.array(self.sms, dtype=_TYPE)) |
|
return dict(sm=sm) |
|
|
|
|
|
class Emeasure(object): |
|
def __init__(self): |
|
""" |
|
E-measure(Enhanced-alignment Measure) for SOD. |
|
|
|
More details about the implementation can be found in https://www.yuque.com/lart/blog/lwgt38 |
|
|
|
:: |
|
|
|
@inproceedings{Emeasure, |
|
title="Enhanced-alignment Measure for Binary Foreground Map Evaluation", |
|
author="Deng-Ping {Fan} and Cheng {Gong} and Yang {Cao} and Bo {Ren} and Ming-Ming {Cheng} and Ali {Borji}", |
|
booktitle=IJCAI, |
|
pages="698--704", |
|
year={2018} |
|
} |
|
""" |
|
self.adaptive_ems = [] |
|
self.changeable_ems = [] |
|
|
|
def step(self, pred: np.ndarray, gt: np.ndarray): |
|
pred, gt = _prepare_data(pred=pred, gt=gt) |
|
self.gt_fg_numel = np.count_nonzero(gt) |
|
self.gt_size = gt.shape[0] * gt.shape[1] |
|
|
|
changeable_ems = self.cal_changeable_em(pred, gt) |
|
self.changeable_ems.append(changeable_ems) |
|
adaptive_em = self.cal_adaptive_em(pred, gt) |
|
self.adaptive_ems.append(adaptive_em) |
|
|
|
def cal_adaptive_em(self, pred: np.ndarray, gt: np.ndarray) -> float: |
|
""" |
|
Calculate the adaptive E-measure. |
|
|
|
:return: adaptive_em |
|
""" |
|
adaptive_threshold = _get_adaptive_threshold(pred, max_value=1) |
|
adaptive_em = self.cal_em_with_threshold(pred, gt, threshold=adaptive_threshold) |
|
return adaptive_em |
|
|
|
def cal_changeable_em(self, pred: np.ndarray, gt: np.ndarray) -> np.ndarray: |
|
""" |
|
Calculate the changeable E-measure, which can be used to obtain the mean E-measure, |
|
the maximum E-measure and the E-measure-threshold curve. |
|
|
|
:return: changeable_ems |
|
""" |
|
changeable_ems = self.cal_em_with_cumsumhistogram(pred, gt) |
|
return changeable_ems |
|
|
|
def cal_em_with_threshold(self, pred: np.ndarray, gt: np.ndarray, threshold: float) -> float: |
|
""" |
|
Calculate the E-measure corresponding to the specific threshold. |
|
|
|
Variable naming rules within the function: |
|
``[pred attribute(foreground fg, background bg)]_[gt attribute(foreground fg, background bg)]_[meaning]`` |
|
|
|
If only ``pred`` or ``gt`` is considered, another corresponding attribute location is replaced with '``_``'. |
|
""" |
|
binarized_pred = pred >= threshold |
|
fg_fg_numel = np.count_nonzero(binarized_pred & gt) |
|
fg_bg_numel = np.count_nonzero(binarized_pred & ~gt) |
|
|
|
fg___numel = fg_fg_numel + fg_bg_numel |
|
bg___numel = self.gt_size - fg___numel |
|
|
|
if self.gt_fg_numel == 0: |
|
enhanced_matrix_sum = bg___numel |
|
elif self.gt_fg_numel == self.gt_size: |
|
enhanced_matrix_sum = fg___numel |
|
else: |
|
parts_numel, combinations = self.generate_parts_numel_combinations( |
|
fg_fg_numel=fg_fg_numel, |
|
fg_bg_numel=fg_bg_numel, |
|
pred_fg_numel=fg___numel, |
|
pred_bg_numel=bg___numel, |
|
) |
|
|
|
results_parts = [] |
|
for i, (part_numel, combination) in enumerate(zip(parts_numel, combinations)): |
|
align_matrix_value = ( |
|
2 |
|
* (combination[0] * combination[1]) |
|
/ (combination[0] ** 2 + combination[1] ** 2 + _EPS) |
|
) |
|
enhanced_matrix_value = (align_matrix_value + 1) ** 2 / 4 |
|
results_parts.append(enhanced_matrix_value * part_numel) |
|
enhanced_matrix_sum = sum(results_parts) |
|
|
|
em = enhanced_matrix_sum / (self.gt_size - 1 + _EPS) |
|
return em |
|
|
|
def cal_em_with_cumsumhistogram(self, pred: np.ndarray, gt: np.ndarray) -> np.ndarray: |
|
""" |
|
Calculate the E-measure corresponding to the threshold that varies from 0 to 255.. |
|
|
|
Variable naming rules within the function: |
|
``[pred attribute(foreground fg, background bg)]_[gt attribute(foreground fg, background bg)]_[meaning]`` |
|
|
|
If only ``pred`` or ``gt`` is considered, another corresponding attribute location is replaced with '``_``'. |
|
""" |
|
pred = (pred * 255).astype(np.uint8) |
|
bins = np.linspace(0, 256, 257) |
|
fg_fg_hist, _ = np.histogram(pred[gt], bins=bins) |
|
fg_bg_hist, _ = np.histogram(pred[~gt], bins=bins) |
|
fg_fg_numel_w_thrs = np.cumsum(np.flip(fg_fg_hist), axis=0) |
|
fg_bg_numel_w_thrs = np.cumsum(np.flip(fg_bg_hist), axis=0) |
|
|
|
fg___numel_w_thrs = fg_fg_numel_w_thrs + fg_bg_numel_w_thrs |
|
bg___numel_w_thrs = self.gt_size - fg___numel_w_thrs |
|
|
|
if self.gt_fg_numel == 0: |
|
enhanced_matrix_sum = bg___numel_w_thrs |
|
elif self.gt_fg_numel == self.gt_size: |
|
enhanced_matrix_sum = fg___numel_w_thrs |
|
else: |
|
parts_numel_w_thrs, combinations = self.generate_parts_numel_combinations( |
|
fg_fg_numel=fg_fg_numel_w_thrs, |
|
fg_bg_numel=fg_bg_numel_w_thrs, |
|
pred_fg_numel=fg___numel_w_thrs, |
|
pred_bg_numel=bg___numel_w_thrs, |
|
) |
|
|
|
results_parts = np.empty(shape=(4, 256), dtype=np.float64) |
|
for i, (part_numel, combination) in enumerate(zip(parts_numel_w_thrs, combinations)): |
|
align_matrix_value = ( |
|
2 |
|
* (combination[0] * combination[1]) |
|
/ (combination[0] ** 2 + combination[1] ** 2 + _EPS) |
|
) |
|
enhanced_matrix_value = (align_matrix_value + 1) ** 2 / 4 |
|
results_parts[i] = enhanced_matrix_value * part_numel |
|
enhanced_matrix_sum = results_parts.sum(axis=0) |
|
|
|
em = enhanced_matrix_sum / (self.gt_size - 1 + _EPS) |
|
return em |
|
|
|
def generate_parts_numel_combinations( |
|
self, fg_fg_numel, fg_bg_numel, pred_fg_numel, pred_bg_numel |
|
): |
|
bg_fg_numel = self.gt_fg_numel - fg_fg_numel |
|
bg_bg_numel = pred_bg_numel - bg_fg_numel |
|
|
|
parts_numel = [fg_fg_numel, fg_bg_numel, bg_fg_numel, bg_bg_numel] |
|
|
|
mean_pred_value = pred_fg_numel / self.gt_size |
|
mean_gt_value = self.gt_fg_numel / self.gt_size |
|
|
|
demeaned_pred_fg_value = 1 - mean_pred_value |
|
demeaned_pred_bg_value = 0 - mean_pred_value |
|
demeaned_gt_fg_value = 1 - mean_gt_value |
|
demeaned_gt_bg_value = 0 - mean_gt_value |
|
|
|
combinations = [ |
|
(demeaned_pred_fg_value, demeaned_gt_fg_value), |
|
(demeaned_pred_fg_value, demeaned_gt_bg_value), |
|
(demeaned_pred_bg_value, demeaned_gt_fg_value), |
|
(demeaned_pred_bg_value, demeaned_gt_bg_value), |
|
] |
|
return parts_numel, combinations |
|
|
|
def get_results(self) -> dict: |
|
""" |
|
Return the results about E-measure. |
|
|
|
:return: dict(em=dict(adp=adaptive_em, curve=changeable_em)) |
|
""" |
|
adaptive_em = np.mean(np.array(self.adaptive_ems, dtype=_TYPE)) |
|
changeable_em = np.mean(np.array(self.changeable_ems, dtype=_TYPE), axis=0) |
|
return dict(em=dict(adp=adaptive_em, curve=changeable_em)) |
|
|
|
|
|
class WeightedFmeasure(object): |
|
def __init__(self, beta: float = 1): |
|
""" |
|
Weighted F-measure for SOD. |
|
|
|
:: |
|
|
|
@inproceedings{wFmeasure, |
|
title={How to eval foreground maps?}, |
|
author={Margolin, Ran and Zelnik-Manor, Lihi and Tal, Ayellet}, |
|
booktitle=CVPR, |
|
pages={248--255}, |
|
year={2014} |
|
} |
|
|
|
:param beta: the weight of the precision |
|
""" |
|
self.beta = beta |
|
self.weighted_fms = [] |
|
|
|
def step(self, pred: np.ndarray, gt: np.ndarray): |
|
pred, gt = _prepare_data(pred=pred, gt=gt) |
|
|
|
if np.all(~gt): |
|
wfm = 0 |
|
else: |
|
wfm = self.cal_wfm(pred, gt) |
|
self.weighted_fms.append(wfm) |
|
|
|
def cal_wfm(self, pred: np.ndarray, gt: np.ndarray) -> float: |
|
""" |
|
Calculate the weighted F-measure. |
|
""" |
|
Dst, Idxt = bwdist(gt == 0, return_indices=True) |
|
|
|
E = np.abs(pred - gt) |
|
Et = np.copy(E) |
|
Et[gt == 0] = Et[Idxt[0][gt == 0], Idxt[1][gt == 0]] |
|
|
|
K = self.matlab_style_gauss2D((7, 7), sigma=5) |
|
EA = convolve(Et, weights=K, mode="constant", cval=0) |
|
MIN_E_EA = np.where(gt & (EA < E), EA, E) |
|
|
|
B = np.where(gt == 0, 2 - np.exp(np.log(0.5) / 5 * Dst), np.ones_like(gt)) |
|
Ew = MIN_E_EA * B |
|
|
|
TPw = np.sum(gt) - np.sum(Ew[gt == 1]) |
|
FPw = np.sum(Ew[gt == 0]) |
|
|
|
R = 1 - np.mean(Ew[gt == 1]) |
|
P = TPw / (TPw + FPw + _EPS) |
|
|
|
Q = (1 + self.beta) * R * P / (R + self.beta * P + _EPS) |
|
|
|
return Q |
|
|
|
def matlab_style_gauss2D(self, shape: tuple = (7, 7), sigma: int = 5) -> np.ndarray: |
|
""" |
|
2D gaussian mask - should give the same result as MATLAB's |
|
fspecial('saliency',[shape],[sigma]) |
|
""" |
|
m, n = [(ss - 1) / 2 for ss in shape] |
|
y, x = np.ogrid[-m : m + 1, -n : n + 1] |
|
h = np.exp(-(x * x + y * y) / (2 * sigma * sigma)) |
|
h[h < np.finfo(h.dtype).eps * h.max()] = 0 |
|
sumh = h.sum() |
|
if sumh != 0: |
|
h /= sumh |
|
return h |
|
|
|
def get_results(self) -> dict: |
|
""" |
|
Return the results about weighted F-measure. |
|
|
|
:return: dict(wfm=weighted_fm) |
|
""" |
|
weighted_fm = np.mean(np.array(self.weighted_fms, dtype=_TYPE)) |
|
return dict(wfm=weighted_fm) |
|
|
|
class BoundaryAccuracy(object): |
|
def __init__(self): |
|
""" |
|
MAE(mean absolute error) for SOD. |
|
|
|
:: |
|
|
|
@inproceedings{MAE, |
|
title={Saliency filters: Contrast based filtering for salient region detection}, |
|
author={Perazzi, Federico and Kr{\"a}henb{\"u}hl, Philipp and Pritch, Yael and Hornung, Alexander}, |
|
booktitle=CVPR, |
|
pages={733--740}, |
|
year={2012} |
|
} |
|
""" |
|
self.bas = [] |
|
self.all_h = 0 |
|
self.all_w = 0 |
|
self.all_max = 0 |
|
|
|
def step(self, pred: np.ndarray, gt: np.ndarray): |
|
|
|
|
|
refined = gt.copy() |
|
|
|
rmin = cmin = 0 |
|
rmax, cmax = gt.shape |
|
|
|
self.all_h += rmax |
|
self.all_w += cmax |
|
self.all_max += max(rmax, cmax) |
|
|
|
refined_h, refined_w = refined.shape |
|
if refined_h != cmax: |
|
refined = np.array(Image.fromarray(pred).resize((cmax, rmax), Image.BILINEAR)) |
|
|
|
if not(gt.sum() < 32*32): |
|
if not((cmax==cmin) or (rmax==rmin)): |
|
class_refined_prob = np.array(Image.fromarray(pred).resize((cmax-cmin, rmax-rmin), Image.BILINEAR)) |
|
refined[rmin:rmax, cmin:cmax] = class_refined_prob |
|
|
|
pred = pred > 128 |
|
gt = gt > 128 |
|
|
|
ba = self.cal_ba(pred, gt) |
|
self.bas.append(ba) |
|
|
|
def get_disk_kernel(self, radius): |
|
return cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (radius*2+1, radius*2+1)) |
|
|
|
def cal_ba(self, pred: np.ndarray, gt: np.ndarray) -> np.ndarray: |
|
""" |
|
Calculate the mean absolute error. |
|
|
|
:return: ba |
|
""" |
|
|
|
gt = gt.astype(np.uint8) |
|
pred = pred.astype(np.uint8) |
|
|
|
h, w = gt.shape |
|
|
|
min_radius = 1 |
|
max_radius = (w+h)/300 |
|
num_steps = 5 |
|
|
|
pred_acc = [None] * num_steps |
|
|
|
for i in range(num_steps): |
|
curr_radius = min_radius + int((max_radius-min_radius)/num_steps*i) |
|
|
|
kernel = self.get_disk_kernel(curr_radius) |
|
boundary_region = cv2.morphologyEx(gt, cv2.MORPH_GRADIENT, kernel) > 0 |
|
|
|
gt_in_bound = gt[boundary_region] |
|
pred_in_bound = pred[boundary_region] |
|
|
|
num_edge_pixels = (boundary_region).sum() |
|
num_pred_gd_pix = ((gt_in_bound) * (pred_in_bound) + (1-gt_in_bound) * (1-pred_in_bound)).sum() |
|
|
|
pred_acc[i] = num_pred_gd_pix / num_edge_pixels |
|
|
|
ba = sum(pred_acc)/num_steps |
|
return ba |
|
|
|
def get_results(self) -> dict: |
|
""" |
|
Return the results about MAE. |
|
|
|
:return: dict(mae=mae) |
|
""" |
|
mba = np.mean(np.array(self.bas, _TYPE)) |
|
return dict(mba=mba) |