|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from torch.nn.parameter import Parameter |
|
from operator import xor |
|
from typing import Optional |
|
|
|
from lib.modules.layers import * |
|
from utils.misc import * |
|
class SICA(nn.Module): |
|
def __init__(self, in_channel, out_channel=1, depth=64, base_size=None, stage=None, lmap_in=False): |
|
super(SICA, self).__init__() |
|
self.in_channel = in_channel |
|
self.depth = depth |
|
self.lmap_in = lmap_in |
|
if base_size is not None and stage is not None: |
|
self.stage_size = (base_size[0] // (2 ** stage), base_size[1] // (2 ** stage)) |
|
else: |
|
self.stage_size = None |
|
|
|
self.conv_query = nn.Sequential(Conv2d(in_channel, depth, 3, relu=True), |
|
Conv2d(depth, depth, 3, relu=True)) |
|
self.conv_key = nn.Sequential(Conv2d(in_channel, depth, 1, relu=True), |
|
Conv2d(depth, depth, 1, relu=True)) |
|
self.conv_value = nn.Sequential(Conv2d(in_channel, depth, 1, relu=True), |
|
Conv2d(depth, depth, 1, relu=True)) |
|
|
|
if self.lmap_in is True: |
|
self.ctx = 5 |
|
else: |
|
self.ctx = 3 |
|
|
|
self.conv_out1 = Conv2d(depth, depth, 3, relu=True) |
|
self.conv_out2 = Conv2d(in_channel + depth, depth, 3, relu=True) |
|
self.conv_out3 = Conv2d(depth, depth, 3, relu=True) |
|
self.conv_out4 = Conv2d(depth, out_channel, 1) |
|
|
|
self.threshold = Parameter(torch.tensor([0.5])) |
|
|
|
if self.lmap_in is True: |
|
self.lthreshold = Parameter(torch.tensor([0.5])) |
|
|
|
def forward(self, x, smap, lmap: Optional[torch.Tensor]=None): |
|
assert not xor(self.lmap_in is True, lmap is not None) |
|
b, c, h, w = x.shape |
|
|
|
|
|
smap = F.interpolate(smap, size=x.shape[-2:], mode='bilinear', align_corners=False) |
|
smap = torch.sigmoid(smap) |
|
p = smap - self.threshold |
|
|
|
fg = torch.clip(p, 0, 1) |
|
bg = torch.clip(-p, 0, 1) |
|
cg = self.threshold - torch.abs(p) |
|
|
|
if self.lmap_in is True and lmap is not None: |
|
lmap = F.interpolate(lmap, size=x.shape[-2:], mode='bilinear', align_corners=False) |
|
lmap = torch.sigmoid(lmap) |
|
lp = lmap - self.lthreshold |
|
fp = torch.clip(lp, 0, 1) |
|
bp = torch.clip(-lp, 0, 1) |
|
|
|
prob = [fg, bg, cg, fp, bp] |
|
else: |
|
prob = [fg, bg, cg] |
|
|
|
prob = torch.cat(prob, dim=1) |
|
|
|
|
|
if self.stage_size is not None: |
|
shape = self.stage_size |
|
shape_mul = self.stage_size[0] * self.stage_size[1] |
|
else: |
|
shape = (h, w) |
|
shape_mul = h * w |
|
|
|
f = F.interpolate(x, size=shape, mode='bilinear', align_corners=False).view(b, shape_mul, -1) |
|
prob = F.interpolate(prob, size=shape, mode='bilinear', align_corners=False).view(b, self.ctx, shape_mul) |
|
|
|
|
|
context = torch.bmm(prob, f).permute(0, 2, 1).unsqueeze(3) |
|
|
|
|
|
query = self.conv_query(x).view(b, self.depth, -1).permute(0, 2, 1) |
|
key = self.conv_key(context).view(b, self.depth, -1) |
|
value = self.conv_value(context).view(b, self.depth, -1).permute(0, 2, 1) |
|
|
|
|
|
sim = torch.bmm(query, key) |
|
sim = (self.depth ** -.5) * sim |
|
sim = F.softmax(sim, dim=-1) |
|
|
|
|
|
context = torch.bmm(sim, value).permute(0, 2, 1).contiguous().view(b, -1, h, w) |
|
context = self.conv_out1(context) |
|
|
|
x = torch.cat([x, context], dim=1) |
|
x = self.conv_out2(x) |
|
x = self.conv_out3(x) |
|
out = self.conv_out4(x) |
|
|
|
return x, out |