emo_go_new / README.md
system's picture
system HF Staff
Commit From AutoTrain
72335e1
---
tags: autotrain
language: unk
widget:
- text: "I love AutoTrain 🤗"
datasets:
- crcb/autotrain-data-go_emo_new
co2_eq_emissions: 20.58663910106142
---
# Model Trained Using AutoTrain
- Problem type: Multi-class Classification
- Model ID: 813325491
- CO2 Emissions (in grams): 20.58663910106142
## Validation Metrics
- Loss: 1.3628994226455688
- Accuracy: 0.5920355494787216
- Macro F1: 0.4844439507523978
- Micro F1: 0.5920355494787216
- Weighted F1: 0.5873137663478112
- Macro Precision: 0.5458988948121151
- Micro Precision: 0.5920355494787216
- Weighted Precision: 0.591386299522425
- Macro Recall: 0.4753100798358001
- Micro Recall: 0.5920355494787216
- Weighted Recall: 0.5920355494787216
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/crcb/autotrain-go_emo_new-813325491
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("crcb/autotrain-go_emo_new-813325491", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("crcb/autotrain-go_emo_new-813325491", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)
```