Axolotl-LLama / README.md
createPLL's picture
Upload folder using huggingface_hub
be179d7 verified
|
raw
history blame
3.35 kB
metadata
library_name: peft
license: llama3.2
base_model: NousResearch/Llama-3.2-1B
tags:
  - generated_from_trainer
datasets:
  - createPLL/gemma2bpll
model-index:
  - name: outputs/qlora-out
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.6.0

base_model: NousResearch/Llama-3.2-1B
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: createPLL/gemma2bpll
    type: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./outputs/qlora-out

adapter: qlora
lora_model_dir:

sequence_len: 2048
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true

lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3

warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  pad_token: "<|end_of_text|>"

outputs/qlora-out

This model is a fine-tuned version of NousResearch/Llama-3.2-1B on the createPLL/gemma2bpll dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9679

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
1.77 0.0042 1 1.9898
0.8841 0.2524 60 1.0753
0.7772 0.5047 120 0.9961
0.7169 0.7571 180 0.9679

Framework versions

  • PEFT 0.14.0
  • Transformers 4.47.1
  • Pytorch 2.3.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.21.0