Cross-Encoder for Semantic Textual Similarity

This model was trained using SentenceTransformers Cross-Encoder class.

Training Data

This model was trained on the STS benchmark dataset. The model will predict a score between 0 and 1 how for the semantic similarity of two sentences.

Usage and Performance

Pre-trained models can be used like this:

from sentence_transformers import CrossEncoder

model = CrossEncoder('cross-encoder/stsb-distilroberta-base')
scores = model.predict([('Sentence 1', 'Sentence 2'), ('Sentence 3', 'Sentence 4')])

The model will predict scores for the pairs ('Sentence 1', 'Sentence 2') and ('Sentence 3', 'Sentence 4').

You can use this model also without sentence_transformers and by just using Transformers AutoModel class

Downloads last month
71,726
Safetensors
Model size
82.1M params
Tensor type
I64
Β·
F32
Β·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support text-ranking models for sentence-transformers library.

Model tree for cross-encoder/stsb-distilroberta-base

Finetuned
(608)
this model

Dataset used to train cross-encoder/stsb-distilroberta-base

Spaces using cross-encoder/stsb-distilroberta-base 4