tomaarsen HF Staff commited on
Commit
23cae4c
·
verified ·
1 Parent(s): 57a4bac

Add new CrossEncoder model

Browse files
Files changed (3) hide show
  1. README.md +32 -32
  2. config.json +36 -28
  3. onnx/model.onnx +3 -0
README.md CHANGED
@@ -1,33 +1,33 @@
1
- ---
2
- license: apache-2.0
3
- datasets:
4
- - sentence-transformers/stsb
5
- language:
6
- - en
7
- base_model:
8
- - distilbert/distilroberta-base
9
- pipeline_tag: text-ranking
10
- library_name: sentence-transformers
11
- tags:
12
- - transformers
13
- ---
14
- # Cross-Encoder for Semantic Textual Similarity
15
- This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.
16
-
17
- ## Training Data
18
- This model was trained on the [STS benchmark dataset](http://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark). The model will predict a score between 0 and 1 how for the semantic similarity of two sentences.
19
-
20
-
21
- ## Usage and Performance
22
-
23
- Pre-trained models can be used like this:
24
- ```python
25
- from sentence_transformers import CrossEncoder
26
-
27
- model = CrossEncoder('cross-encoder/stsb-distilroberta-base')
28
- scores = model.predict([('Sentence 1', 'Sentence 2'), ('Sentence 3', 'Sentence 4')])
29
- ```
30
-
31
- The model will predict scores for the pairs `('Sentence 1', 'Sentence 2')` and `('Sentence 3', 'Sentence 4')`.
32
-
33
  You can use this model also without sentence_transformers and by just using Transformers ``AutoModel`` class
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - sentence-transformers/stsb
5
+ language:
6
+ - en
7
+ base_model:
8
+ - distilbert/distilroberta-base
9
+ pipeline_tag: text-ranking
10
+ library_name: sentence-transformers
11
+ tags:
12
+ - transformers
13
+ ---
14
+ # Cross-Encoder for Semantic Textual Similarity
15
+ This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.
16
+
17
+ ## Training Data
18
+ This model was trained on the [STS benchmark dataset](http://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark). The model will predict a score between 0 and 1 how for the semantic similarity of two sentences.
19
+
20
+
21
+ ## Usage and Performance
22
+
23
+ Pre-trained models can be used like this:
24
+ ```python
25
+ from sentence_transformers import CrossEncoder
26
+
27
+ model = CrossEncoder('cross-encoder/stsb-distilroberta-base')
28
+ scores = model.predict([('Sentence 1', 'Sentence 2'), ('Sentence 3', 'Sentence 4')])
29
+ ```
30
+
31
+ The model will predict scores for the pairs `('Sentence 1', 'Sentence 2')` and `('Sentence 3', 'Sentence 4')`.
32
+
33
  You can use this model also without sentence_transformers and by just using Transformers ``AutoModel`` class
config.json CHANGED
@@ -1,28 +1,36 @@
1
- {
2
- "architectures": [
3
- "RobertaForSequenceClassification"
4
- ],
5
- "attention_probs_dropout_prob": 0.1,
6
- "bos_token_id": 0,
7
- "eos_token_id": 2,
8
- "gradient_checkpointing": false,
9
- "hidden_act": "gelu",
10
- "hidden_dropout_prob": 0.1,
11
- "hidden_size": 768,
12
- "id2label": {
13
- "0": "LABEL_0"
14
- },
15
- "initializer_range": 0.02,
16
- "intermediate_size": 3072,
17
- "label2id": {
18
- "LABEL_0": 0
19
- },
20
- "layer_norm_eps": 1e-05,
21
- "max_position_embeddings": 514,
22
- "model_type": "roberta",
23
- "num_attention_heads": 12,
24
- "num_hidden_layers": 6,
25
- "pad_token_id": 1,
26
- "type_vocab_size": 1,
27
- "vocab_size": 50265
28
- }
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "RobertaForSequenceClassification"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "classifier_dropout": null,
8
+ "eos_token_id": 2,
9
+ "gradient_checkpointing": false,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "id2label": {
14
+ "0": "LABEL_0"
15
+ },
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 3072,
18
+ "label2id": {
19
+ "LABEL_0": 0
20
+ },
21
+ "layer_norm_eps": 1e-05,
22
+ "max_position_embeddings": 514,
23
+ "model_type": "roberta",
24
+ "num_attention_heads": 12,
25
+ "num_hidden_layers": 6,
26
+ "pad_token_id": 1,
27
+ "position_embedding_type": "absolute",
28
+ "sentence_transformers": {
29
+ "activation_fn": "torch.nn.modules.activation.Sigmoid",
30
+ "version": "4.1.0.dev0"
31
+ },
32
+ "transformers_version": "4.52.0.dev0",
33
+ "type_vocab_size": 1,
34
+ "use_cache": true,
35
+ "vocab_size": 50265
36
+ }
onnx/model.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10e20822d3d976a31398e1b54c9c1fb2302bdc6630fe0a54dd8376799a00ced2
3
+ size 328643805