Prompt Format:

[instruction]
[optional input]

[response will start after two newlines]
!pip install -q bitsandbytes datasets accelerate loralib 
!pip install -q git+https://github.com/huggingface/transformers.git@main git+https://github.com/huggingface/peft.git
!pip install -q geov

import torch
from peft import PeftModel, PeftConfig
from geov import GeoVForCausalLM, GeoVTokenizer

model = GeoVForCausalLM.from_pretrained(
    "GeoV/GeoV-9b", 
    load_in_8bit=True, 
    low_cpu_mem_usage=True,
    device_map='auto',
)
tokenizer = GeoVTokenizer.from_pretrained("GeoV/GeoV-9b")
peft_model_id = "crumb/GeoV-Instruct-LoRA"
model = PeftModel.from_pretrained(model, peft_model_id)

# Inference
prompt = '''
Describe the structure of an atom.

'''
batch = tokenizer(prompt, return_tensors='pt')
with torch.cuda.amp.autocast():
  output_tokens = model.generate(**batch, max_new_tokens=50)
print(tokenizer.decode(output_tokens[0], skip_special_tokens=True))
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.