File size: 26,284 Bytes
a560a5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 |
import dataclasses
from enum import auto, Enum
import os
import re
from typing import List, Tuple
import torchvision.transforms.functional as F
def parse_tool_output(text):
try:
pattern = r'"thoughts🤔"(.*)"actions🚀"(.*)"value👉"(.*)'
matches = re.findall(pattern, text, re.DOTALL)
assert len(matches) == 1, f"len(matches)={len(matches)}"
assert len(matches[0]) == 3, f"len(matches[0])={len(matches[0])}"
except Exception as e:
# print(e)
matches = None
return matches
return matches
def make_it_small_html(text):
return f'<span style="font-size: 12px; color: gray;line-height: 1.0;">{text}</span>'
def get_hr_html():
return f'<hr width="100%" size="1" color="silver" align="center">'
def get_placehold(text):
if text[-1] == "▌":
text = text[:-1]
res = '"thinking'
timenow = len(text) % 21
num_point = timenow // 3
for i in range(num_point):
res += "."
res += '"'
return res
def parse_msg(msg):
if len(msg) == 3:
return msg[0], msg[1], msg[2], None
if len(msg) == 4:
return msg[0], msg[1], msg[2], msg[3]
raise ValueError(f"Invalid msg with len {len(msg)}: {msg}")
class SeparatorStyle(Enum):
"""Different separator style."""
SINGLE = auto()
TWO = auto()
MPT = auto()
PLAIN = auto()
LLAMA_2 = auto()
@dataclasses.dataclass
class Conversation:
"""A class that keeps all conversation history."""
system: str
roles: List[str]
messages: List[List[str]]
offset: int
sep_style: SeparatorStyle = SeparatorStyle.SINGLE
sep: str = "###"
sep2: str = None
version: str = "Unknown"
skip_next: bool = False
def get_prompt(self):
messages = self.messages
if len(messages) > 0 and type(messages[0][1]) is tuple:
messages = self.messages.copy()
init_role, init_msg = messages[0].copy()
init_msg = init_msg[0].replace("<image>", "").strip()
if 'mmtag' in self.version:
messages[0] = (init_role, init_msg)
messages.insert(0, (self.roles[0], "<Image><image></Image>"))
messages.insert(1, (self.roles[1], "Received."))
else:
messages[0] = (init_role, "<image>\n" + init_msg)
if self.sep_style == SeparatorStyle.SINGLE:
ret = self.system + self.sep
for role, message in messages:
if message:
if type(message) is tuple:
message, _, _, _ = parse_msg(message)
ret += role + ": " + message + self.sep
else:
ret += role + ":"
elif self.sep_style == SeparatorStyle.TWO:
seps = [self.sep, self.sep2]
ret = self.system + seps[0]
for i, (role, message) in enumerate(messages):
if message:
if type(message) is tuple:
message, _, _, _ = parse_msg(message)
ret += role + ": " + message + seps[i % 2]
else:
ret += role + ":"
elif self.sep_style == SeparatorStyle.MPT:
ret = self.system + self.sep
for role, message in messages:
if message:
if type(message) is tuple:
message, _, _, _ = parse_msg(message)
ret += role + message + self.sep
else:
ret += role
elif self.sep_style == SeparatorStyle.LLAMA_2:
def wrap_sys(msg): return f"<<SYS>>\n{msg}\n<</SYS>>\n\n"
def wrap_inst(msg): return f"[INST] {msg} [/INST]"
ret = ""
for i, (role, message) in enumerate(messages):
if i == 0:
assert message, "first message should not be none"
assert role == self.roles[0], "first message should come from user"
if message:
if type(message) is tuple:
message, _, _, _ = parse_msg(message)
if i == 0:
message = wrap_sys(self.system) + message
if i % 2 == 0:
message = wrap_inst(message)
ret += self.sep + message
else:
ret += " " + message + " " + self.sep2
else:
ret += ""
ret = ret.lstrip(self.sep)
elif self.sep_style == SeparatorStyle.PLAIN:
seps = [self.sep, self.sep2]
ret = self.system
for i, (role, message) in enumerate(messages):
if message:
if type(message) is tuple:
message, _, _, _ = parse_msg(message)
ret += message + seps[i % 2]
else:
ret += ""
else:
raise ValueError(f"Invalid style: {self.sep_style}")
return ret
def append_message(self, role, message):
self.messages.append([role, message])
def get_images(self, return_pil=False):
images = []
for i, (role, msg) in enumerate(self.messages[self.offset:]):
if len(self.roles) > 2 and role == self.roles[2]:
continue
if role == self.roles[0]:
# if i % 2 == 0:
if type(msg) is tuple:
import base64
from io import BytesIO
from PIL import Image
# msg, image, image_process_mode = msg
msg, image, image_process_mode, sketch_mask = parse_msg(
msg)
if image_process_mode == "Pad":
def expand2square(pil_img, background_color=(122, 116, 104)):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(
pil_img.mode, (width, width), background_color)
result.paste(
pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(
pil_img.mode, (height, height), background_color)
result.paste(
pil_img, ((height - width) // 2, 0))
return result
image = expand2square(image)
elif image_process_mode in ["Default", "Crop"]:
pass
elif image_process_mode == "Resize":
image = image.resize((336, 336))
elif image_process_mode == "None":
pass
else:
raise ValueError(
f"Invalid image_process_mode: {image_process_mode}")
max_hw, min_hw = max(image.size), min(image.size)
aspect_ratio = max_hw / min_hw
max_len, min_len = 800, 400
shortest_edge = int(
min(max_len / aspect_ratio, min_len, min_hw))
longest_edge = int(shortest_edge * aspect_ratio)
W, H = image.size
if longest_edge != max(image.size):
if H > W:
H, W = longest_edge, shortest_edge
else:
H, W = shortest_edge, longest_edge
image = image.resize((W, H))
if return_pil:
images.append(image)
else:
buffered = BytesIO()
image.save(buffered, format="PNG")
img_b64_str = base64.b64encode(
buffered.getvalue()).decode()
images.append(img_b64_str)
return images
def get_raw_images(self, return_pil=False, image_process_mode=None):
images = []
for i, (role, msg) in enumerate(self.messages[self.offset:]):
if len(self.roles) > 2 and role == self.roles[2]:
continue
if role == self.roles[0]:
# if i % 2 == 0:
if type(msg) is tuple:
import base64
from io import BytesIO
from PIL import Image
msg, img, _, sketch_mask = parse_msg(msg)
# resize for large images
w, h = img.size
if max(h, w) > 800:
if h > w:
new_h = 800
new_w = int(w * 800 / h)
else:
new_w = 800
new_h = int(h * 800 / w)
# import ipdb; ipdb.set_trace()
img = F.resize(img, (new_h, new_w))
if return_pil:
images.append(img)
else:
buffered = BytesIO()
img.save(buffered, format="PNG")
img_b64_str = base64.b64encode(
buffered.getvalue()).decode()
images.append(img_b64_str)
return images
def tools_filter_msg(self, msg):
return msg
def merge_output(self, ret, with_debug_parameter=False):
# print(f'with_debug_parameter: {with_debug_parameter}')
assert isinstance(
ret, list), "ret should be a list, but got {}".format(type(ret))
ret_new = []
i = 0
while i < len(ret):
text: str = ret[i][0]
# # check if previous is "thinking.."
# if len(ret_new) > 0 and isinstance(ret_new[-1][0], str) and ret_new[-1][0].strip().replace('.', '') == '"thinking"':
# ret_new = ret_new[:-1]
# for some undisplayed message
if not isinstance(text, str):
ret_new.append(ret[i])
i += 1
continue
text = text.strip()
# for the case with image
if text.startswith('<img src="data:image/png;base64'):
if len(ret_new) > 0:
ret_new[-1] = [ret_new[-1][0] + '\n' + ret[i][0], None]
else:
ret_new.append(ret[i])
i += 1
continue
if text.startswith('"th'):
# for "thoughts🤔"
matches = parse_tool_output(text)
if matches is not None:
thought = matches[0][0]
action = matches[0][1]
value = matches[0][2]
action_json = eval(action)
# if len(action_json) > 0:
if (len(action_json) > 0):
# tool use branch
res_value = f'"thoughts🤔" {matches[0][0].strip()}\n' +\
f'"actions🚀" {matches[0][1].strip()}\n' \
+ f'"value👉" {matches[0][2].strip()}'
res_value = make_it_small_html(res_value)
# explore next
matches_next2 = None
if (i + 1 < len(ret)):
# get next message
text_next: str = ret[i +
1][0].strip().replace("\n\n", "\n")
if len(ret_new) > 0 and "model outputs:" in text_next:
# auged ques
text_next_html = make_it_small_html(text_next)
res_value = res_value + get_hr_html() + text_next_html
# explore next2
if i + 2 < len(ret):
text_next2: str = ret[i+2][0].strip()
# if text_next2.startswith('"th'):
matches_next2 = parse_tool_output(
text_next2)
if matches_next2 is not None:
text_next2_html = f'"thoughts🤔" {matches_next2[0][0].strip()}\n' + \
f'"actions🚀" {matches_next2[0][1].strip()}\n' + \
f'"value👉"'
text_next2_html = make_it_small_html(
text_next2_html)
res_value = res_value + get_hr_html() + text_next2_html
res_value = res_value + \
f'\n{matches_next2[0][2].strip()}'
i += 1
else:
res_value = res_value + get_hr_html() + make_it_small_html(text_next2)
i += 1
i += 1
# post process for no debug parameters
if not with_debug_parameter:
if matches_next2 is not None:
res_value = matches_next2[0][2].strip()
else:
res_value = get_placehold(res_value)
# add to ret_new
ret_new.append([res_value, None])
else:
# regular conv branch
if with_debug_parameter:
res_value = f'"thoughts🤔" {matches[0][0].strip()}\n' +\
f'"actions🚀" {matches[0][1].strip()}\n' \
+ f'"value👉"\n'
res_value = make_it_small_html(res_value)
res_value = res_value + f'{matches[0][2].strip()}'
else:
res_value = f'{matches[0][2].strip()}'
ret_new.append([res_value, None])
else:
if with_debug_parameter:
ret_new.append(ret[i])
else:
ret_new.append([
get_placehold(ret[i][0].strip()),
None
])
else:
ret_new.append(ret[i])
i += 1
return ret_new
def image_to_url(self, image):
import base64
from io import BytesIO
max_hw, min_hw = max(image.size), min(image.size)
aspect_ratio = max_hw / min_hw
max_len, min_len = 800, 400
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
longest_edge = int(shortest_edge * aspect_ratio)
W, H = image.size
if H > W:
H, W = longest_edge, shortest_edge
else:
H, W = shortest_edge, longest_edge
image = image.resize((W, H))
buffered = BytesIO()
image.save(buffered, format="JPEG")
img_b64_str = base64.b64encode(buffered.getvalue()).decode()
img_str = f'<img src="data:image/png;base64,{img_b64_str}" alt="user upload image" />'
return img_str
def to_gradio_chatbot(self, with_debug_parameter=False):
ret = []
for i, (role, msg) in enumerate(self.messages[self.offset:]):
# if i % 2 == 0:
if len(self.roles) > 2 and role == self.roles[2]:
continue
# if role == self.roles[0]:
if 1:
if type(msg) is tuple:
import base64
from io import BytesIO
# msg, image, image_process_mode = msg
msg, image, image_process_mode, sketch_mask = parse_msg(
msg)
if not isinstance(image, list):
img_str = self.image_to_url(image)
if i == 0:
ret.append([img_str, None])
msg = msg.replace('<image>', '').strip()
if role == self.roles[1]:
msg = self.tools_filter_msg(msg)
if len(msg) > 0:
ret.append([msg, None])
if i != 0:
ret.append([img_str, None])
else:
# a list of image
if role == self.roles[1]:
msg = self.tools_filter_msg(msg)
msg = msg.replace('<image>', '').strip()
if len(msg) > 0:
ret.append([msg, None])
for j, img in enumerate(image):
img_str = self.image_to_url(img)
ret.append([img_str, None])
else:
if role == self.roles[1]:
msg = self.tools_filter_msg(msg)
ret.append([msg, None])
else:
ret[-1][-1] = msg
ret = self.merge_output(ret, with_debug_parameter=with_debug_parameter)
return ret
def copy(self):
return Conversation(
system=self.system,
roles=self.roles,
messages=[[x, y] for x, y in self.messages],
offset=self.offset,
sep_style=self.sep_style,
sep=self.sep,
sep2=self.sep2,
version=self.version)
def dict(self, force_str=False):
def remove_pil(x, force_str):
if not force_str:
return x
if isinstance(x, Image.Image):
return b64_encode(x)
if isinstance(x, list):
return [remove_pil(y, force_str) for y in x]
if isinstance(x, tuple):
return [remove_pil(y, force_str) for y in x]
if isinstance(x, dict):
return {k: remove_pil(v, force_str) for k, v in x.items()}
return x
if len(self.get_images()) > 0:
return {
"system": self.system,
"roles": self.roles,
"messages": [[x, remove_pil(y[0], force_str=force_str) if type(y) is tuple else y] for x, y in self.messages],
"offset": self.offset,
"sep": self.sep,
"sep2": self.sep2,
}
return {
"system": self.system,
"roles": self.roles,
"messages": remove_pil(self.messages, force_str=force_str),
"offset": self.offset,
"sep": self.sep,
"sep2": self.sep2,
}
conv_vicuna_v0 = Conversation(
system="A chat between a curious human and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
roles=("Human", "Assistant"),
messages=(
("Human", "What are the key differences between renewable and non-renewable energy sources?"),
("Assistant",
"Renewable energy sources are those that can be replenished naturally in a relatively "
"short amount of time, such as solar, wind, hydro, geothermal, and biomass. "
"Non-renewable energy sources, on the other hand, are finite and will eventually be "
"depleted, such as coal, oil, and natural gas. Here are some key differences between "
"renewable and non-renewable energy sources:\n"
"1. Availability: Renewable energy sources are virtually inexhaustible, while non-renewable "
"energy sources are finite and will eventually run out.\n"
"2. Environmental impact: Renewable energy sources have a much lower environmental impact "
"than non-renewable sources, which can lead to air and water pollution, greenhouse gas emissions, "
"and other negative effects.\n"
"3. Cost: Renewable energy sources can be more expensive to initially set up, but they typically "
"have lower operational costs than non-renewable sources.\n"
"4. Reliability: Renewable energy sources are often more reliable and can be used in more remote "
"locations than non-renewable sources.\n"
"5. Flexibility: Renewable energy sources are often more flexible and can be adapted to different "
"situations and needs, while non-renewable sources are more rigid and inflexible.\n"
"6. Sustainability: Renewable energy sources are more sustainable over the long term, while "
"non-renewable sources are not, and their depletion can lead to economic and social instability.\n")
),
offset=2,
sep_style=SeparatorStyle.SINGLE,
sep="###",
)
conv_vicuna_v1 = Conversation(
system="A chat between a curious user and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions.",
roles=("USER", "ASSISTANT"),
version="v1",
messages=(),
offset=0,
sep_style=SeparatorStyle.TWO,
sep=" ",
sep2="</s>",
)
conv_llama_2 = Conversation(
system="""You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.""",
roles=("USER", "ASSISTANT"),
version="llama_v2",
messages=(),
offset=0,
sep_style=SeparatorStyle.LLAMA_2,
sep="<s>",
sep2="</s>",
)
conv_llava_llama_2 = Conversation(
system="You are a helpful language and vision assistant. "
"You are able to understand the visual content that the user provides, "
"and assist the user with a variety of tasks using natural language.",
roles=("USER", "ASSISTANT"),
version="llama_v2",
messages=(),
offset=0,
sep_style=SeparatorStyle.LLAMA_2,
sep="<s>",
sep2="</s>",
)
conv_mpt = Conversation(
system="""<|im_start|>system
A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.""",
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
version="mpt",
messages=(),
offset=0,
sep_style=SeparatorStyle.MPT,
sep="<|im_end|>",
)
conv_llava_plain = Conversation(
system="",
roles=("", ""),
messages=(
),
offset=0,
sep_style=SeparatorStyle.PLAIN,
sep="\n",
)
conv_llava_v0 = Conversation(
system="A chat between a curious human and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
roles=("Human", "Assistant"),
messages=(
),
offset=0,
sep_style=SeparatorStyle.SINGLE,
sep="###",
)
conv_llava_v0_mmtag = Conversation(
system="A chat between a curious user and an artificial intelligence assistant. "
"The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
"The visual content will be provided with the following format: <Image>visual content</Image>.",
roles=("Human", "Assistant"),
messages=(
),
offset=0,
sep_style=SeparatorStyle.SINGLE,
sep="###",
version="v0_mmtag",
)
conv_llava_v1 = Conversation(
system="A chat between a curious human and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
roles=("USER", "ASSISTANT"),
version="v1",
messages=(),
offset=0,
sep_style=SeparatorStyle.TWO,
sep=" ",
sep2="</s>",
)
conv_llava_v1_mmtag = Conversation(
system="A chat between a curious user and an artificial intelligence assistant. "
"The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
"The visual content will be provided with the following format: <Image>visual content</Image>.",
roles=("USER", "ASSISTANT"),
messages=(),
offset=0,
sep_style=SeparatorStyle.TWO,
sep=" ",
sep2="</s>",
version="v1_mmtag",
)
# enable this to use a different default conversation by setting the LLAVA_DEFAULT_CONVERSATION environment variable
default_conversation_name = os.getenv(
"LLAVA_DEFAULT_CONVERSATION", "conv_vicuna_v1")
default_conversation = globals()[default_conversation_name]
print(f"Using conversation: {default_conversation_name}")
conv_templates = {
"default": conv_vicuna_v0,
"v0": conv_vicuna_v0,
"v1": conv_vicuna_v1,
"vicuna_v1": conv_vicuna_v1,
"llama_2": conv_llama_2,
"plain": conv_llava_plain,
"v0_plain": conv_llava_plain,
"llava_v0": conv_llava_v0,
"v0_mmtag": conv_llava_v0_mmtag,
"llava_v1": conv_llava_v1,
"v1_mmtag": conv_llava_v1_mmtag,
"llava_llama_2": conv_llava_llama_2,
"mpt": conv_mpt,
}
if __name__ == "__main__":
print(default_conversation.get_prompt())
|