File size: 42,680 Bytes
a560a5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 |
from gradio.helpers import Examples
import argparse
import base64
from collections import defaultdict
import copy
import datetime
from functools import partial
import json
import os
import torch
from pathlib import Path
import cv2
import numpy as np
import re
import time
from io import BytesIO
from PIL import Image
from PIL import Image as _Image # using _ to minimize namespace pollution
import gradio as gr
from gradio import processing_utils, utils
from gradio_client import utils as client_utils
import requests
from llava.conversation import (default_conversation, conv_templates,
SeparatorStyle)
from llava.constants import LOGDIR
from llava.utils import (build_logger, server_error_msg,
violates_moderation, moderation_msg)
import hashlib
from llava.serve.utils import annotate_xyxy, show_mask
import pycocotools.mask as mask_util
R = partial(round, ndigits=2)
class ImageMask(gr.components.Image):
"""
Sets: source="canvas", tool="sketch"
"""
is_template = True
def __init__(self, **kwargs):
super().__init__(source="upload", tool="sketch",
type='pil', interactive=True, **kwargs)
# super().__init__(source="upload", tool="boxes", type='pil', interactive=True, **kwargs)
def preprocess(self, x):
# import ipdb; ipdb.set_trace()
# a hack to get the mask
if isinstance(x, str):
im = processing_utils.decode_base64_to_image(x)
w, h = im.size
# a mask, array, uint8
mask_np = np.zeros((h, w, 4), dtype=np.uint8)
# to pil
mask_pil = Image.fromarray(mask_np, mode='RGBA')
# to base64
mask_b64 = processing_utils.encode_pil_to_base64(mask_pil)
x = {
'image': x,
'mask': mask_b64
}
res = super().preprocess(x)
# arr -> PIL
# res['image'] = Image.fromarray(res['image'])
# if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO':
# import ipdb; ipdb.set_trace()
return res
def get_mask_bbox(mask_img: Image):
# convert to np array
mask = np.array(mask_img)[..., 0]
# check if has masks
if mask.sum() == 0:
return None
# get coords
coords = np.argwhere(mask > 0)
# calculate bbox
y0, x0 = coords.min(axis=0)
y1, x1 = coords.max(axis=0) + 1
# get h and w
h, w = mask.shape[:2]
# norm to [0, 1]
x0, y0, x1, y1 = R(x0 / w), R(y0 / h), R(x1 / w), R(y1 / h)
return [x0, y0, x1, y1]
def plot_boxes(image: Image, res: dict) -> Image:
boxes = torch.Tensor(res["boxes"])
logits = torch.Tensor(res["logits"]) if 'logits' in res else None
phrases = res["phrases"] if 'phrases' in res else None
image_source = np.array(image)
annotated_frame = annotate_xyxy(
image_source=image_source, boxes=boxes, logits=logits, phrases=phrases)
return Image.fromarray(annotated_frame)
def plot_masks(image: Image, res: dict) -> Image:
masks_rle = res["masks_rle"]
for mask_rle in masks_rle:
mask = mask_util.decode(mask_rle)
mask = torch.Tensor(mask)
image = show_mask(mask, image)
return image
def plot_points(image: Image, res: dict) -> Image:
points = torch.Tensor(res["points"])
point_labels = torch.Tensor(res["point_labels"])
points = np.array(points)
point_labels = np.array(point_labels)
annotated_frame = np.array(image)
h, w = annotated_frame.shape[:2]
for i in range(points.shape[1]):
color = (0, 255, 0) if point_labels[0, i] == 1 else (0, 0, 255)
annotated_frame = cv2.circle(annotated_frame, (int(
points[0, i, 0] * w), int(points[0, i, 1] * h)), 5, color, -1)
return Image.fromarray(annotated_frame)
logger = build_logger("gradio_web_server", "gradio_web_server.log")
headers = {"User-Agent": "LLaVA-Plus Client"}
no_change_btn = gr.Button.update()
enable_btn = gr.Button.update(interactive=True)
disable_btn = gr.Button.update(interactive=False)
priority = {
"vicuna-13b": "aaaaaaa",
"koala-13b": "aaaaaab",
}
R = partial(round, ndigits=2)
def b64_encode(img):
buffered = BytesIO()
img.save(buffered, format="JPEG")
img_b64_str = base64.b64encode(buffered.getvalue()).decode()
return img_b64_str
def get_worker_addr(controller_addr, worker_name):
# get grounding dino addr
if worker_name.startswith("http"):
sub_server_addr = worker_name
else:
controller_addr = controller_addr
ret = requests.post(controller_addr + "/refresh_all_workers")
assert ret.status_code == 200
ret = requests.post(controller_addr + "/list_models")
models = ret.json()["models"]
models.sort()
# print(f"Models: {models}")
ret = requests.post(
controller_addr + "/get_worker_address", json={"model": worker_name}
)
sub_server_addr = ret.json()["address"]
# print(f"worker_name: {worker_name}")
return sub_server_addr
def get_conv_log_filename():
t = datetime.datetime.now()
name = os.path.join(
LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json")
return name
def get_model_list():
ret = requests.post(args.controller_url + "/refresh_all_workers")
assert ret.status_code == 200
ret = requests.post(args.controller_url + "/list_models")
models = ret.json()["models"]
models.sort(key=lambda x: priority.get(x, x))
logger.info(f"Models: {models}")
return models
get_window_url_params = """
function() {
const params = new URLSearchParams(window.location.search);
url_params = Object.fromEntries(params);
console.log(url_params);
return url_params;
}
"""
def load_demo(url_params, request: gr.Request):
logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}")
dropdown_update = gr.Dropdown.update(visible=True)
if "model" in url_params:
model = url_params["model"]
if model in models:
dropdown_update = gr.Dropdown.update(
value=model, visible=True)
state = default_conversation.copy()
return (state,
dropdown_update,
gr.Chatbot.update(visible=True),
gr.Textbox.update(visible=True),
gr.Button.update(visible=True),
gr.Row.update(visible=True),
gr.Accordion.update(visible=True),
gr.Accordion.update(visible=True))
def load_demo_refresh_model_list(request: gr.Request):
logger.info(f"load_demo. ip: {request.client.host}")
models = get_model_list()
state = default_conversation.copy()
return (state, gr.Dropdown.update(
choices=models,
value=models[0] if len(models) > 0 else ""),
gr.Chatbot.update(visible=True),
gr.Textbox.update(visible=True),
gr.Button.update(visible=True),
gr.Row.update(visible=True),
gr.Accordion.update(visible=True),
gr.Accordion.update(visible=True))
def vote_last_response(state, vote_type, model_selector, request: gr.Request):
with open(get_conv_log_filename(), "a") as fout:
data = {
"tstamp": round(time.time(), 4),
"type": vote_type,
"model": model_selector,
"state": state.dict(),
"ip": request.client.host,
}
fout.write(json.dumps(data) + "\n")
def upvote_last_response(state, model_selector, request: gr.Request):
logger.info(f"upvote. ip: {request.client.host}")
vote_last_response(state, "upvote", model_selector, request)
return ("",) + (disable_btn,) * 3
def downvote_last_response(state, model_selector, request: gr.Request):
logger.info(f"downvote. ip: {request.client.host}")
vote_last_response(state, "downvote", model_selector, request)
return ("",) + (disable_btn,) * 3
def flag_last_response(state, model_selector, request: gr.Request):
logger.info(f"flag. ip: {request.client.host}")
vote_last_response(state, "flag", model_selector, request)
return ("",) + (disable_btn,) * 3
def regenerate(state, image_process_mode, with_debug_parameter_from_state, request: gr.Request):
logger.info(f"regenerate. ip: {request.client.host}")
state.messages[-1][-1] = None
prev_human_msg = state.messages[-2]
if type(prev_human_msg[1]) in (tuple, list):
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
state.skip_next = False
return (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state), "", None, None) + (disable_btn,) * 5
def clear_history(with_debug_parameter_from_state, request: gr.Request):
logger.info(f"clear_history. ip: {request.client.host}")
state = default_conversation.copy()
return (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state), "", None, None) + (disable_btn,) * 5
def change_debug_state(state, with_debug_parameter_from_state, request: gr.Request):
logger.info(f"change_debug_state. ip: {request.client.host}")
print("with_debug_parameter_from_state: ", with_debug_parameter_from_state)
with_debug_parameter_from_state = not with_debug_parameter_from_state
# modify the text on debug_btn
debug_btn_value = "๐ Prog (off)" if not with_debug_parameter_from_state else "๐ถ Prog (on)"
debug_btn_update = gr.Button.update(
value=debug_btn_value,
)
state_update = with_debug_parameter_from_state
return (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state), "", None) + (debug_btn_update, state_update)
def add_text(state, text, image_dict, ref_image_dict, image_process_mode, with_debug_parameter_from_state, request: gr.Request):
# dict_keys(['image', 'mask'])
if image_dict is not None:
image = image_dict['image']
else:
image = None
logger.info(f"add_text. ip: {request.client.host}. len: {len(text)}")
if len(text) <= 0 and image is None:
state.skip_next = True
return (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state), "", None) + (no_change_btn,) * 5
if args.moderate:
flagged = violates_moderation(text)
if flagged:
state.skip_next = True
return (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state), moderation_msg, None) + (
no_change_btn,) * 5
text = text[:1536] # Hard cut-off
if image is not None:
text = text[:1200] # Hard cut-off for images
if '<image>' not in text:
text = text + '\n<image>'
text = (text, image, image_process_mode)
state = default_conversation.copy()
# a hack, for mask
sketch_mask = image_dict['mask']
if sketch_mask is not None:
text = (text[0], text[1], text[2], sketch_mask)
# check if visual prompt is used
bounding_box = get_mask_bbox(sketch_mask)
if bounding_box is not None:
text_input_new = text[0] + f"\nInput box: {bounding_box}"
text = (text_input_new, text[1], text[2], text[3])
if ref_image_dict is not None:
# text = (text[0], text[1], text[2], text[3], {
# 'ref_image': ref_image_dict['image'],
# 'ref_mask': ref_image_dict['mask']
# })
state.reference_image = b64_encode(ref_image_dict['image'])
state.reference_mask = b64_encode(ref_image_dict['mask'])
state.append_message(state.roles[0], text)
state.append_message(state.roles[1], None)
state.skip_next = False
return (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state), "", None, None) + (disable_btn,) * 6
def http_bot(state, model_selector, temperature, top_p, max_new_tokens, with_debug_parameter_from_state, request: gr.Request):
logger.info(f"http_bot. ip: {request.client.host}")
start_tstamp = time.time()
model_name = model_selector
if state.skip_next:
# This generate call is skipped due to invalid inputs
yield (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state)) + (no_change_btn,) * 6
return
if len(state.messages) == state.offset + 2:
# # First round of conversation
if "llava" in model_name.lower():
if 'llama-2' in model_name.lower():
template_name = "llava_llama_2"
elif "v1" in model_name.lower():
if 'mmtag' in model_name.lower():
template_name = "v1_mmtag"
elif 'plain' in model_name.lower() and 'finetune' not in model_name.lower():
template_name = "v1_mmtag"
else:
template_name = "llava_v1"
elif "mpt" in model_name.lower():
template_name = "mpt"
else:
if 'mmtag' in model_name.lower():
template_name = "v0_mmtag"
elif 'plain' in model_name.lower() and 'finetune' not in model_name.lower() and 'tools' not in model_name.lower():
template_name = "v0_mmtag"
else:
template_name = "llava_v0"
elif "mpt" in model_name:
template_name = "mpt_text"
elif "llama-2" in model_name:
template_name = "llama_2"
else:
template_name = "vicuna_v1"
print("template_name: ", template_name)
# # hack:
# # template_name = "multimodal_tools"
# # import ipdb; ipdb.set_trace()
# # image_name = [hashlib.md5(image.tobytes()).hexdigest() for image in state.get_images(return_pil=True)][0]
new_state = conv_templates[template_name].copy()
# if len(new_state.roles) == 2:
# new_state.roles = tuple(list(new_state.roles) + ["system"])
# new_state.append_message(new_state.roles[2], f"receive an image with name `{image_name}.jpg`")
new_state.append_message(new_state.roles[0], state.messages[-2][1])
new_state.append_message(new_state.roles[1], None)
# for reference image
new_state.reference_image = getattr(state, 'reference_image', None)
new_state.reference_mask = getattr(state, 'reference_mask', None)
# update
state = new_state
print("Messages๏ผ", state.messages)
# Query worker address
controller_url = args.controller_url
ret = requests.post(controller_url + "/get_worker_address",
json={"model": model_name})
worker_addr = ret.json()["address"]
logger.info(f"model_name: {model_name}, worker_addr: {worker_addr}")
# No available worker
if worker_addr == "":
state.messages[-1][-1] = server_error_msg
yield (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state), disable_btn, disable_btn, disable_btn, enable_btn, enable_btn, enable_btn)
return
# Construct prompt
prompt = state.get_prompt()
# import ipdb; ipdb.set_trace()
# Save images
all_images = state.get_images(return_pil=True)
all_image_hash = [hashlib.md5(image.tobytes()).hexdigest()
for image in all_images]
for image, hash in zip(all_images, all_image_hash):
t = datetime.datetime.now()
filename = os.path.join(
LOGDIR, "serve_images", f"{t.year}-{t.month:02d}-{t.day:02d}", f"{hash}.jpg")
if not os.path.isfile(filename):
os.makedirs(os.path.dirname(filename), exist_ok=True)
image.save(filename)
# import ipdb; ipdb.set_trace()
# Make requests
pload = {
"model": model_name,
"prompt": prompt,
"temperature": float(temperature),
"top_p": float(top_p),
"max_new_tokens": min(int(max_new_tokens), 1536),
"stop": state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2,
"images": f'List of {len(state.get_images())} images: {all_image_hash}',
}
logger.info(f"==== request ====\n{pload}\n==== request ====")
pload['images'] = state.get_images()
state.messages[-1][-1] = "โ"
yield (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state)) + (disable_btn,) * 6
try:
# Stream output
response = requests.post(worker_addr + "/worker_generate_stream",
headers=headers, json=pload, stream=True, timeout=10)
# import ipdb; ipdb.set_trace()
for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
if chunk:
data = json.loads(chunk.decode())
if data["error_code"] == 0:
output = data["text"][len(prompt):].strip()
state.messages[-1][-1] = output + "โ"
yield (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state)) + (disable_btn,) * 6
else:
output = data["text"] + \
f" (error_code: {data['error_code']})"
state.messages[-1][-1] = output
yield (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state)) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn, enable_btn)
return
time.sleep(0.03)
except requests.exceptions.RequestException as e:
print("error: ", e)
state.messages[-1][-1] = server_error_msg
yield (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state)) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn, enable_btn)
return
# remove the cursor
state.messages[-1][-1] = state.messages[-1][-1][:-1]
yield (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state)) + (enable_btn,) * 6
# check if we need tools
model_output_text = state.messages[-1][1]
# import ipdb; ipdb.set_trace()
print("model_output_text: ", model_output_text,
"Now we are going to parse the output.")
# parse the output
# import ipdb; ipdb.set_trace()
try:
pattern = r'"thoughts๐ค"(.*)"actions๐"(.*)"value๐"(.*)'
matches = re.findall(pattern, model_output_text, re.DOTALL)
# import ipdb; ipdb.set_trace()
if len(matches) > 0:
# tool_cfg = json.loads(matches[0][1].strip())
try:
tool_cfg = json.loads(matches[0][1].strip())
except Exception as e:
tool_cfg = json.loads(
matches[0][1].strip().replace("\'", "\""))
print("tool_cfg:", tool_cfg)
else:
tool_cfg = None
except Exception as e:
logger.info(f"Failed to parse tool config: {e}")
tool_cfg = None
# run tool augmentation
print("trigger tool augmentation with tool_cfg: ", tool_cfg)
if tool_cfg is not None and len(tool_cfg) > 0:
assert len(
tool_cfg) == 1, "Only one tool is supported for now, but got: {}".format(tool_cfg)
api_name = tool_cfg[0]['API_name']
tool_cfg[0]['API_params'].pop('image', None)
images = state.get_raw_images()
if len(images) > 0:
image = images[0]
else:
image = None
api_paras = {
'image': image,
"box_threshold": 0.3,
"text_threshold": 0.25,
**tool_cfg[0]['API_params']
}
if api_name in ['inpainting']:
api_paras['mask'] = getattr(state, 'mask_rle', None)
if api_name in ['openseed', 'controlnet']:
if api_name == 'controlnet':
api_paras['mask'] = getattr(state, 'image_seg', None)
api_paras['mode'] = api_name
api_name = 'controlnet'
if api_name == 'seem':
reference_image = getattr(state, 'reference_image', None)
reference_mask = getattr(state, 'reference_mask', None)
api_paras['refimg'] = reference_image
api_paras['refmask'] = reference_mask
# extract ref image and mask
# import ipdb; ipdb.set_trace()
tool_worker_addr = get_worker_addr(controller_url, api_name)
print("tool_worker_addr: ", tool_worker_addr)
tool_response = requests.post(
tool_worker_addr + "/worker_generate",
headers=headers,
json=api_paras,
).json()
tool_response_clone = copy.deepcopy(tool_response)
print("tool_response: ", tool_response)
# clean up the response
masks_rle = None
edited_image = None
image_seg = None # for openseed
iou_sort_masks = None
if 'boxes' in tool_response:
tool_response['boxes'] = [[R(_b) for _b in bb]
for bb in tool_response['boxes']]
if 'logits' in tool_response:
tool_response['logits'] = [R(_l) for _l in tool_response['logits']]
if 'scores' in tool_response:
tool_response['scores'] = [R(_s) for _s in tool_response['scores']]
if "masks_rle" in tool_response:
masks_rle = tool_response.pop("masks_rle")
if "edited_image" in tool_response:
edited_image = tool_response.pop("edited_image")
if "size" in tool_response:
_ = tool_response.pop("size")
if api_name == "easyocr":
_ = tool_response.pop("boxes")
_ = tool_response.pop("scores")
if "retrieval_results" in tool_response:
tool_response['retrieval_results'] = [
{'caption': i['caption'], 'similarity': R(i['similarity'])}
for i in tool_response['retrieval_results']
]
if "image_seg" in tool_response:
image_seg = tool_response.pop("image_seg")
if "iou_sort_masks" in tool_response:
iou_sort_masks = tool_response.pop("iou_sort_masks")
if len(tool_response) == 0:
tool_response['message'] = f"The {api_name} has processed the image."
# hack
if masks_rle is not None:
state.mask_rle = masks_rle[0]
if image_seg is not None:
state.image_seg = image_seg
# if edited_image is not None:
# edited_image
# build new response
new_response = f"{api_name} model outputs: {tool_response}\n\n"
first_question = state.messages[-2][-1]
if isinstance(first_question, tuple):
first_question = first_question[0].replace("<image>", "")
first_question = first_question.strip()
# add new response to the state
state.append_message(state.roles[0],
new_response +
"Please summarize the model outputs and answer my first question: {}".format(
first_question)
)
state.append_message(state.roles[1], None)
# Construct prompt
prompt2 = state.get_prompt()
# Make new requests
pload = {
"model": model_name,
"prompt": prompt2,
"temperature": float(temperature),
"max_new_tokens": min(int(max_new_tokens), 1536),
"stop": state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2,
"images": f'List of {len(state.get_images())} images: {all_image_hash}',
}
logger.info(f"==== request ====\n{pload}")
pload['images'] = state.get_images()
state.messages[-1][-1] = "โ"
yield (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state)) + (disable_btn,) * 6
try:
# Stream output
response = requests.post(worker_addr + "/worker_generate_stream",
headers=headers, json=pload, stream=True, timeout=10)
# import ipdb; ipdb.set_trace()
for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
if chunk:
data = json.loads(chunk.decode())
if data["error_code"] == 0:
output = data["text"][len(prompt2):].strip()
state.messages[-1][-1] = output + "โ"
yield (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state)) + (disable_btn,) * 6
else:
output = data["text"] + \
f" (error_code: {data['error_code']})"
state.messages[-1][-1] = output
yield (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state)) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn, enable_btn)
return
time.sleep(0.03)
except requests.exceptions.RequestException as e:
state.messages[-1][-1] = server_error_msg
yield (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state)) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn, enable_btn)
return
# remove the cursor
state.messages[-1][-1] = state.messages[-1][-1][:-1]
# add image(s)
if edited_image is not None:
edited_image_pil = Image.open(
BytesIO(base64.b64decode(edited_image))).convert("RGB")
state.messages[-1][-1] = (state.messages[-1]
[-1], edited_image_pil, "Crop")
if image_seg is not None:
edited_image_pil = Image.open(
BytesIO(base64.b64decode(image_seg))).convert("RGB")
state.messages[-1][-1] = (state.messages[-1]
[-1], edited_image_pil, "Crop")
if iou_sort_masks is not None:
assert isinstance(
iou_sort_masks, list), "iou_sort_masks should be a list, but got: {}".format(iou_sort_masks)
edited_image_pil_list = [Image.open(
BytesIO(base64.b64decode(i))).convert("RGB") for i in iou_sort_masks]
state.messages[-1][-1] = (state.messages[-1]
[-1], edited_image_pil_list, "Crop")
if api_name in ['grounding_dino', 'ram+grounding_dino', 'blip2+grounding_dino']:
edited_image_pil = Image.open(
BytesIO(base64.b64decode(state.get_images()[0]))).convert("RGB")
edited_image_pil = plot_boxes(edited_image_pil, tool_response)
state.messages[-1][-1] = (state.messages[-1]
[-1], edited_image_pil, "Crop")
if api_name in ['grounding_dino+sam', 'grounded_sam']:
edited_image_pil = Image.open(
BytesIO(base64.b64decode(state.get_images()[0]))).convert("RGB")
edited_image_pil = plot_boxes(edited_image_pil, tool_response)
edited_image_pil = plot_masks(
edited_image_pil, tool_response_clone)
state.messages[-1][-1] = (state.messages[-1]
[-1], edited_image_pil, "Crop")
if api_name in ['sam']:
if 'points' in tool_cfg[0]['API_params']:
edited_image_pil = Image.open(
BytesIO(base64.b64decode(state.get_images()[0]))).convert("RGB")
edited_image_pil = plot_masks(
edited_image_pil, tool_response_clone)
tool_response_clone['points'] = tool_cfg[0]['API_params']['points']
tool_response_clone['point_labels'] = tool_cfg[0]['API_params']['point_labels']
edited_image_pil = plot_points(
edited_image_pil, tool_response_clone)
state.messages[-1][-1] = (state.messages[-1]
[-1], edited_image_pil, "Crop")
else:
assert 'boxes' in tool_cfg[0]['API_params'], "not find 'boxes' in {}".format(
tool_cfg[0]['API_params'].keys())
edited_image_pil = Image.open(
BytesIO(base64.b64decode(state.get_images()[0]))).convert("RGB")
edited_image_pil = plot_boxes(edited_image_pil, tool_response)
tool_response_clone['boxes'] = tool_cfg[0]['API_params']['boxes']
edited_image_pil = plot_masks(
edited_image_pil, tool_response_clone)
state.messages[-1][-1] = (state.messages[-1]
[-1], edited_image_pil, "Crop")
yield (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state)) + (enable_btn,) * 6
finish_tstamp = time.time()
logger.info(f"{output}")
# models = get_model_list()
# FIXME: disabled temporarily for image generation.
with open(get_conv_log_filename(), "a") as fout:
data = {
"tstamp": round(finish_tstamp, 4),
"type": "chat",
"model": model_name,
"start": round(start_tstamp, 4),
"finish": round(start_tstamp, 4),
"state": state.dict(force_str=True),
"images": all_image_hash,
"ip": request.client.host,
}
fout.write(json.dumps(data) + "\n")
title_markdown = ("""
# ๐ LLaVA-Plus: Learning to Use Tools For Creating Multimodal Agents
## **L**arge **L**anguage **a**nd **V**ision **A**ssistants that **P**lug and **L**earn to **U**se **S**kills
[[Project Page]](https://llava-vl.github.io/llava-plus) [[Paper]](https://arxiv.org/abs/2311.05437) [[Code]](https://github.com/LLaVA-VL/LLaVA-Plus-Codebase) [[Model]]()
""")
tos_markdown = ("""
### Terms of use
By using this service, users are required to agree to the following terms:
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research.
Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator.
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
""")
learn_more_markdown = ("""
### License
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
""")
def build_demo(embed_mode):
textbox = gr.Textbox(
show_label=False, placeholder="Enter text and press ENTER", visible=False, container=False)
with gr.Blocks(title="LLaVA-Plus", theme=gr.themes.Base()) as demo:
state = gr.State()
if not embed_mode:
gr.Markdown(title_markdown)
with gr.Row():
with gr.Column(scale=3):
with gr.Row(elem_id="model_selector_row"):
model_selector = gr.Dropdown(
choices=models,
value=models[0] if len(models) > 0 else "",
interactive=True,
show_label=False,
container=False)
imagebox = ImageMask()
cur_dir = os.path.dirname(os.path.abspath(__file__))
with gr.Accordion("Reference Image", open=False, visible=False) as ref_image_row:
gr.Markdown(
"The reference image is for some specific tools, like SEEM.")
ref_image_box = ImageMask()
with gr.Accordion("Parameters", open=False, visible=False) as parameter_row:
image_process_mode = gr.Radio(
["Crop", "Resize", "Pad"],
value="Crop",
label="Preprocess for non-square image")
temperature = gr.Slider(
minimum=0.0, maximum=1.0, value=0.2, step=0.1, interactive=True, label="Temperature",)
top_p = gr.Slider(
minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Top P",)
max_output_tokens = gr.Slider(
minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",)
# with_debug_parameter_check_box = gr.Checkbox(label="With debug parameter", checked=args.with_debug_parameter)
with gr.Column(scale=6):
chatbot = gr.Chatbot(
elem_id="chatbot", label="LLaVA-Plus Chatbot", height=550)
with gr.Row():
with gr.Column(scale=8):
textbox.render()
with gr.Column(scale=1, min_width=60):
submit_btn = gr.Button(value="Submit", visible=False)
with gr.Row(visible=False) as button_row:
upvote_btn = gr.Button(
value="๐ Upvote", interactive=False)
downvote_btn = gr.Button(
value="๐ Downvote", interactive=False)
flag_btn = gr.Button(value="โ ๏ธ Flag", interactive=False)
# stop_btn = gr.Button(value="โน๏ธ Stop Generation", interactive=False)
regenerate_btn = gr.Button(
value="๐ Regenerate", interactive=False)
clear_btn = gr.Button(
value="๐๏ธ Clear history", interactive=False)
debug_btn = gr.Button(
value="๐ Prog (off)", interactive=True)
# import ipdb; ipdb.set_trace()
if args.with_debug_parameter:
debug_btn.value = "๐ถ Prog (on)"
with_debug_parameter_state = gr.State(
value=args.with_debug_parameter,
)
with gr.Row():
with gr.Column():
gr.Examples(examples=[
[f"{cur_dir}/examples/frisbee.jpg",
"Detect the person and frisbee in the image."],
[f"{cur_dir}/examples/wranch_box.png",
"My bike is broken. I want to use a wrench to fix it. Can you show me the location of wrench and how to use it?"],
], inputs=[imagebox, textbox], label="Detection Examples: ")
gr.Examples(examples=[
[f"{cur_dir}/examples/mask_twitter.png",
"segment birds in the image, then tell how many birds in it"],
[f"{cur_dir}/examples/cat_comp.jpeg",
"Please detect and segment the cat and computer from the image"],
], inputs=[imagebox, textbox], label="Segmentation Examples: ")
gr.Examples(examples=[
[f"{cur_dir}/examples/tbs.webp",
"can you segment with the given box?"],
], inputs=[imagebox, textbox], label="Interactive Segmentation (Please draw a sketch to cover the full object): ")
gr.Examples(examples=[
[f"{cur_dir}/examples/tower.png",
"can you segment with multi-granularity?"],
], inputs=[imagebox, textbox], label="Multi-granularity Segmentation (Please draw a sketch as an input point): ")
gr.Examples(examples=[
[f"{cur_dir}/examples/road.png",
f"{cur_dir}/examples/road_ref2.webp",
"can you segment refer to the reference image? then describe the image"],
], inputs=[imagebox, ref_image_box, textbox], label="Reference image segmentation (Please draw a sketch at the reference box):")
with gr.Column():
gr.Examples(examples=[
[f"{cur_dir}/examples/mooncake.png",
"Describe the food in the image? search on the internet"],
[f"{cur_dir}/examples/Judas.png",
"what's the image? search on the internet"],
], inputs=[imagebox, textbox], label="Searching Examples: ")
gr.Examples(examples=[
[f"{cur_dir}/examples/calendar.png",
"make the image like autumn. then generate some attractive texts for Instagram posts"],
[f"{cur_dir}/examples/paris.png",
"i want to post a message on Instagram. add some firework to the image, and write an attractive post for my ins."],
], inputs=[imagebox, textbox], label="Editing Examples: ")
gr.Examples(examples=[
["generate a view of the city skyline of downtown Seattle in a sketch style and generate an Instagram post"],
["generate a view of the city skyline of Shenzhen in a future and technique style and generate a red book post"],
], inputs=[textbox], label="Generation Examples: ")
gr.Examples(examples=[
[f"{cur_dir}/examples/extreme_ironing.jpg",
"What is unusual about this image?"],
[f"{cur_dir}/examples/waterview.jpg",
"What are the things I should be cautious about when I visit here?"],
], inputs=[imagebox, textbox], label="Conversation Examples: ")
if not embed_mode:
gr.Markdown(tos_markdown)
gr.Markdown(learn_more_markdown)
url_params = gr.JSON(visible=False)
# Register listeners
btn_list = [upvote_btn, downvote_btn,
flag_btn, regenerate_btn, clear_btn]
upvote_btn.click(upvote_last_response,
[state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn])
downvote_btn.click(downvote_last_response,
[state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn])
flag_btn.click(flag_last_response,
[state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn])
regenerate_btn.click(regenerate, [state, image_process_mode, with_debug_parameter_state],
[state, chatbot, textbox, imagebox, ref_image_box] + btn_list).then(
http_bot, [state, model_selector, temperature, top_p,
max_output_tokens, with_debug_parameter_state],
[state, chatbot] + btn_list + [debug_btn])
clear_btn.click(clear_history, [with_debug_parameter_state], [
state, chatbot, textbox, imagebox, ref_image_box] + btn_list)
textbox.submit(add_text, [state, textbox, imagebox, ref_image_box, image_process_mode, with_debug_parameter_state], [state, chatbot, textbox, imagebox, ref_image_box] + btn_list + [debug_btn]
).then(http_bot, [state, model_selector, temperature, top_p, max_output_tokens, with_debug_parameter_state],
[state, chatbot] + btn_list + [debug_btn])
submit_btn.click(add_text, [state, textbox, imagebox, ref_image_box, image_process_mode, with_debug_parameter_state], [state, chatbot, textbox, imagebox, ref_image_box] + btn_list + [debug_btn]
).then(http_bot, [state, model_selector, temperature, top_p, max_output_tokens, with_debug_parameter_state],
[state, chatbot] + btn_list + [debug_btn])
debug_btn.click(change_debug_state, [state, with_debug_parameter_state], [
state, chatbot, textbox, imagebox] + [debug_btn, with_debug_parameter_state])
if args.model_list_mode == "once":
demo.load(load_demo, [url_params], [state, model_selector,
chatbot, textbox, submit_btn, button_row, parameter_row, ref_image_row],
_js=get_window_url_params)
elif args.model_list_mode == "reload":
demo.load(load_demo_refresh_model_list, None, [state, model_selector,
chatbot, textbox, submit_btn, button_row, parameter_row, ref_image_row])
else:
raise ValueError(
f"Unknown model list mode: {args.model_list_mode}")
return demo
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="0.0.0.0")
parser.add_argument("--port", type=int)
parser.add_argument("--controller-url", type=str,
default="http://localhost:21001")
parser.add_argument("--concurrency-count", type=int, default=8)
parser.add_argument("--model-list-mode", type=str, default="once",
choices=["once", "reload"])
parser.add_argument("--share", action="store_true")
parser.add_argument("--moderate", action="store_true")
parser.add_argument("--embed", action="store_true")
parser.add_argument("--debug", action="store_true")
parser.add_argument("--with_debug_parameter", action="store_true")
args = parser.parse_args()
logger.info(f"args: {args}")
models = get_model_list()
models = [i for i in models if 'llava' in i]
logger.info(args)
demo = build_demo(args.embed)
_app, local_url, share_url = demo.queue(concurrency_count=args.concurrency_count, status_update_rate=10,
api_open=True).launch(
server_name=args.host, server_port=args.port, share=args.share, debug=args.debug)
print("Local URL: ", local_url)
print("Share URL: ", share_url)
|